图卷积网络:在不同领域和系统中的方法和应用分析

Hongrui Peng
{"title":"图卷积网络:在不同领域和系统中的方法和应用分析","authors":"Hongrui Peng","doi":"10.1109/CISCE50729.2020.00037","DOIUrl":null,"url":null,"abstract":"With the prosperity of the information era and the maturity of computer technology, artificial intelligence has attracted much more attention. The emergence of Graph Neural Networks (GNNs) as a theory that can process non-Euclidean structure data such as graph data makes more applications possible. Graph Convolutional Neural Networks (GCNs), as a theoretical branch of GNNs, uses new theories to innovate and optimize on the basis of inheriting the ideas of predecessors, allowing the rapid development of this field. In this article, the author mainly introduces the basic theory of converting graph data into Euclidean structure data, which is the most important part of GCNs, distinguishing from Convolutional Neural Networks (CNNs). The successful applications of GCNs in the fields of recommendation systems and traffic prediction are also listed. Through the analysis of theory and applications, the shortcomings and development prospects of GNNs are discussed. Finally, the author points out that GCNs still have room for improvement in terms of data scale, network layers, and dynamics and complex nature of graph data.","PeriodicalId":101777,"journal":{"name":"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Graph Convolutional Networks: An Analysis of Method and Applications in Different Fields and Systems\",\"authors\":\"Hongrui Peng\",\"doi\":\"10.1109/CISCE50729.2020.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the prosperity of the information era and the maturity of computer technology, artificial intelligence has attracted much more attention. The emergence of Graph Neural Networks (GNNs) as a theory that can process non-Euclidean structure data such as graph data makes more applications possible. Graph Convolutional Neural Networks (GCNs), as a theoretical branch of GNNs, uses new theories to innovate and optimize on the basis of inheriting the ideas of predecessors, allowing the rapid development of this field. In this article, the author mainly introduces the basic theory of converting graph data into Euclidean structure data, which is the most important part of GCNs, distinguishing from Convolutional Neural Networks (CNNs). The successful applications of GCNs in the fields of recommendation systems and traffic prediction are also listed. Through the analysis of theory and applications, the shortcomings and development prospects of GNNs are discussed. Finally, the author points out that GCNs still have room for improvement in terms of data scale, network layers, and dynamics and complex nature of graph data.\",\"PeriodicalId\":101777,\"journal\":{\"name\":\"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISCE50729.2020.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISCE50729.2020.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着信息时代的繁荣和计算机技术的成熟,人工智能越来越受到人们的关注。图神经网络(gnn)作为一种可以处理非欧几里德结构数据(如图数据)的理论的出现,使更多的应用成为可能。图卷积神经网络(Graph Convolutional Neural Networks, GCNs)作为GNNs的一个理论分支,在继承前人思想的基础上,运用新的理论进行创新和优化,使得该领域得到了快速发展。本文主要介绍了将图数据转换为欧几里得结构数据的基本理论,这是GCNs区别于卷积神经网络(Convolutional Neural Networks, cnn)的最重要的部分。本文还列举了GCNs在推荐系统和流量预测领域的成功应用。通过理论和应用分析,讨论了gnn的不足和发展前景。最后,作者指出GCNs在数据规模、网络层、图数据的动态性和复杂性等方面仍有改进的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Convolutional Networks: An Analysis of Method and Applications in Different Fields and Systems
With the prosperity of the information era and the maturity of computer technology, artificial intelligence has attracted much more attention. The emergence of Graph Neural Networks (GNNs) as a theory that can process non-Euclidean structure data such as graph data makes more applications possible. Graph Convolutional Neural Networks (GCNs), as a theoretical branch of GNNs, uses new theories to innovate and optimize on the basis of inheriting the ideas of predecessors, allowing the rapid development of this field. In this article, the author mainly introduces the basic theory of converting graph data into Euclidean structure data, which is the most important part of GCNs, distinguishing from Convolutional Neural Networks (CNNs). The successful applications of GCNs in the fields of recommendation systems and traffic prediction are also listed. Through the analysis of theory and applications, the shortcomings and development prospects of GNNs are discussed. Finally, the author points out that GCNs still have room for improvement in terms of data scale, network layers, and dynamics and complex nature of graph data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信