多环境概率P系统的一种新的仿真算法

Miguel A. Martínez-del-Amor, Ignacio Pérez-Hurtado, M. Pérez-Jiménez, A. Riscos-Núñez, M. A. Colomer
{"title":"多环境概率P系统的一种新的仿真算法","authors":"Miguel A. Martínez-del-Amor, Ignacio Pérez-Hurtado, M. Pérez-Jiménez, A. Riscos-Núñez, M. A. Colomer","doi":"10.1109/BICTA.2010.5645352","DOIUrl":null,"url":null,"abstract":"Multienvironment P systems are the base of a general framework for modeling ecosystems dynamics. On one hand, this modeling framework represents the structural and dynamical aspects of real ecosystems in a discrete, modular and compressive way. On the other hand, the inherent randomness and uncertainty of biological systems are captured by using probabilistic strategies. Nowadays, the simulation of these P systems based models is fundamental for experimentation and validation. In this paper, we introduce a new simulation algorithm, called DNDP, which performs object distribution and maximal consistency in the application of rules, that are crucial aspects of these systems. The paper also depicts a parallel implementation of the algorithm, and a comparison with the existing algorithm in PLinguaCore is provided. In order to test the performance of the presented algorithm, several experiments (simulations) have been carried out over four simple P systems with the same skeleton and different number of environments.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A new simulation algorithm for multienvironment probabilistic P systems\",\"authors\":\"Miguel A. Martínez-del-Amor, Ignacio Pérez-Hurtado, M. Pérez-Jiménez, A. Riscos-Núñez, M. A. Colomer\",\"doi\":\"10.1109/BICTA.2010.5645352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multienvironment P systems are the base of a general framework for modeling ecosystems dynamics. On one hand, this modeling framework represents the structural and dynamical aspects of real ecosystems in a discrete, modular and compressive way. On the other hand, the inherent randomness and uncertainty of biological systems are captured by using probabilistic strategies. Nowadays, the simulation of these P systems based models is fundamental for experimentation and validation. In this paper, we introduce a new simulation algorithm, called DNDP, which performs object distribution and maximal consistency in the application of rules, that are crucial aspects of these systems. The paper also depicts a parallel implementation of the algorithm, and a comparison with the existing algorithm in PLinguaCore is provided. In order to test the performance of the presented algorithm, several experiments (simulations) have been carried out over four simple P systems with the same skeleton and different number of environments.\",\"PeriodicalId\":302619,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2010.5645352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

多环境P系统是建模生态系统动力学的一般框架的基础。一方面,该建模框架以离散、模块化和压缩的方式表达了真实生态系统的结构和动态方面。另一方面,利用概率策略捕捉生物系统固有的随机性和不确定性。目前,这些基于模型的P系统的仿真是实验和验证的基础。在本文中,我们介绍了一种新的仿真算法,称为DNDP,它在规则应用中执行对象分布和最大一致性,这是这些系统的关键方面。本文还描述了该算法的并行实现,并与PLinguaCore中的现有算法进行了比较。为了测试所提出的算法的性能,在四个具有相同骨架和不同数量环境的简单P系统上进行了几个实验(模拟)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new simulation algorithm for multienvironment probabilistic P systems
Multienvironment P systems are the base of a general framework for modeling ecosystems dynamics. On one hand, this modeling framework represents the structural and dynamical aspects of real ecosystems in a discrete, modular and compressive way. On the other hand, the inherent randomness and uncertainty of biological systems are captured by using probabilistic strategies. Nowadays, the simulation of these P systems based models is fundamental for experimentation and validation. In this paper, we introduce a new simulation algorithm, called DNDP, which performs object distribution and maximal consistency in the application of rules, that are crucial aspects of these systems. The paper also depicts a parallel implementation of the algorithm, and a comparison with the existing algorithm in PLinguaCore is provided. In order to test the performance of the presented algorithm, several experiments (simulations) have been carried out over four simple P systems with the same skeleton and different number of environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信