部分校准均匀线性阵列的方位估计的根-稀有算法

Zhongchi Fang, Zheng Cao, Lan Wang
{"title":"部分校准均匀线性阵列的方位估计的根-稀有算法","authors":"Zhongchi Fang, Zheng Cao, Lan Wang","doi":"10.1109/SiPS47522.2019.9020315","DOIUrl":null,"url":null,"abstract":"The rank-reduction (RARE) algorithm is a well-known class of algorithms for direction of arrival (DOA) es-timation in the presence of imperfect array manifolds. Since the spectral peak search is inevitable for the current RARE algorithm, it may bring a huge occupational load for practical implementations. In order to reduce the computational com-plexity, in this paper, we propose a root-RARE algorithm for DOA estimation with partly calibrated uniform linear arrays (ULAs). Through replacing the spectral peak search with a polynomial root finding, our proposed method can get much higher efficiency than the original RARE method. Simulation results demonstrate that our method can significantly reduce the computational complexity and improve the DOA estimation performance in a low SNR case.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Root-RARE Algorithm for DOA Estimation with Partly Calibrated Uniform Linear Arrays\",\"authors\":\"Zhongchi Fang, Zheng Cao, Lan Wang\",\"doi\":\"10.1109/SiPS47522.2019.9020315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rank-reduction (RARE) algorithm is a well-known class of algorithms for direction of arrival (DOA) es-timation in the presence of imperfect array manifolds. Since the spectral peak search is inevitable for the current RARE algorithm, it may bring a huge occupational load for practical implementations. In order to reduce the computational com-plexity, in this paper, we propose a root-RARE algorithm for DOA estimation with partly calibrated uniform linear arrays (ULAs). Through replacing the spectral peak search with a polynomial root finding, our proposed method can get much higher efficiency than the original RARE method. Simulation results demonstrate that our method can significantly reduce the computational complexity and improve the DOA estimation performance in a low SNR case.\",\"PeriodicalId\":256971,\"journal\":{\"name\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS47522.2019.9020315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

秩约简(RARE)算法是一类著名的不完全阵列流形下的到达方向(DOA)估计算法。由于目前的RARE算法不可避免地要进行谱峰搜索,这可能会给实际实现带来巨大的职业负荷。为了降低计算复杂度,本文提出了一种基于部分校准均匀线性阵列(ula)的DOA估计的根-稀有算法。通过将谱峰搜索替换为多项式寻根,可以获得比原始RARE方法更高的效率。仿真结果表明,在低信噪比情况下,该方法可以显著降低计算复杂度,提高DOA估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Root-RARE Algorithm for DOA Estimation with Partly Calibrated Uniform Linear Arrays
The rank-reduction (RARE) algorithm is a well-known class of algorithms for direction of arrival (DOA) es-timation in the presence of imperfect array manifolds. Since the spectral peak search is inevitable for the current RARE algorithm, it may bring a huge occupational load for practical implementations. In order to reduce the computational com-plexity, in this paper, we propose a root-RARE algorithm for DOA estimation with partly calibrated uniform linear arrays (ULAs). Through replacing the spectral peak search with a polynomial root finding, our proposed method can get much higher efficiency than the original RARE method. Simulation results demonstrate that our method can significantly reduce the computational complexity and improve the DOA estimation performance in a low SNR case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信