利用异质社交媒体情境图探索假新闻检测

Gregor Donabauer, Udo Kruschwitz
{"title":"利用异质社交媒体情境图探索假新闻检测","authors":"Gregor Donabauer, Udo Kruschwitz","doi":"10.48550/arXiv.2212.06560","DOIUrl":null,"url":null,"abstract":"Fake news detection has become a research area that goes way beyond a purely academic interest as it has direct implications on our society as a whole. Recent advances have primarily focused on textbased approaches. However, it has become clear that to be effective one needs to incorporate additional, contextual information such as spreading behaviour of news articles and user interaction patterns on social media. We propose to construct heterogeneous social context graphs around news articles and reformulate the problem as a graph classification task. Exploring the incorporation of different types of information (to get an idea as to what level of social context is most effective) and using different graph neural network architectures indicates that this approach is highly effective with robust results on a common benchmark dataset.","PeriodicalId":126309,"journal":{"name":"European Conference on Information Retrieval","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploring Fake News Detection with Heterogeneous Social Media Context Graphs\",\"authors\":\"Gregor Donabauer, Udo Kruschwitz\",\"doi\":\"10.48550/arXiv.2212.06560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fake news detection has become a research area that goes way beyond a purely academic interest as it has direct implications on our society as a whole. Recent advances have primarily focused on textbased approaches. However, it has become clear that to be effective one needs to incorporate additional, contextual information such as spreading behaviour of news articles and user interaction patterns on social media. We propose to construct heterogeneous social context graphs around news articles and reformulate the problem as a graph classification task. Exploring the incorporation of different types of information (to get an idea as to what level of social context is most effective) and using different graph neural network architectures indicates that this approach is highly effective with robust results on a common benchmark dataset.\",\"PeriodicalId\":126309,\"journal\":{\"name\":\"European Conference on Information Retrieval\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Conference on Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.06560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.06560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

假新闻检测已经成为一个超越纯粹学术兴趣的研究领域,因为它对我们整个社会都有直接的影响。最近的进展主要集中在基于文本的方法上。然而,很明显,要想有效,就需要纳入额外的上下文信息,比如新闻文章的传播行为和社交媒体上的用户互动模式。我们建议围绕新闻文章构建异构社会语境图,并将该问题重新表述为一个图分类任务。探索不同类型信息的合并(以了解哪种社会背景级别最有效)和使用不同的图神经网络体系结构表明,这种方法在通用基准数据集上非常有效,并且具有鲁棒性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Fake News Detection with Heterogeneous Social Media Context Graphs
Fake news detection has become a research area that goes way beyond a purely academic interest as it has direct implications on our society as a whole. Recent advances have primarily focused on textbased approaches. However, it has become clear that to be effective one needs to incorporate additional, contextual information such as spreading behaviour of news articles and user interaction patterns on social media. We propose to construct heterogeneous social context graphs around news articles and reformulate the problem as a graph classification task. Exploring the incorporation of different types of information (to get an idea as to what level of social context is most effective) and using different graph neural network architectures indicates that this approach is highly effective with robust results on a common benchmark dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信