微阵列图像的贝叶斯处理

Neil D. Lawrence, M. Milo, M. Niranjan, P. Rashbass, S. Soullier
{"title":"微阵列图像的贝叶斯处理","authors":"Neil D. Lawrence, M. Milo, M. Niranjan, P. Rashbass, S. Soullier","doi":"10.1109/NNSP.2003.1318005","DOIUrl":null,"url":null,"abstract":"Gene expression measurements quantify the level of mRNA produced from each gene. Two principal methods exist for producing slides for extracting these levels: photolithography and spotted arrays. One difficulty with the spotted array format is determining the size and location of the spots on the array. In this paper we present a Bayesian approach to processing images produced by these arrays that seeks posterior distributions over the size and positions of the spots. This enables us to estimate expression ratios and their variances. Exact inference for the model we specify is intractable; we develop an approximate inference technique, which combines importance sampling with variational inference. Our technique has already been shown to be more consistent than both manual processing and another automated technique [N. D. Lawrence, et al., \"Reducing the Variability in cDNA Microarray Image Processing by Inference\"]. Here we present large-scale results for twenty-four microarray slides each representing 5760 genes and show the dramatic effects of incorporating variance in our downstream analysis. Software based on this algorithm is available for academic use.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bayesian processing of microarray images\",\"authors\":\"Neil D. Lawrence, M. Milo, M. Niranjan, P. Rashbass, S. Soullier\",\"doi\":\"10.1109/NNSP.2003.1318005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene expression measurements quantify the level of mRNA produced from each gene. Two principal methods exist for producing slides for extracting these levels: photolithography and spotted arrays. One difficulty with the spotted array format is determining the size and location of the spots on the array. In this paper we present a Bayesian approach to processing images produced by these arrays that seeks posterior distributions over the size and positions of the spots. This enables us to estimate expression ratios and their variances. Exact inference for the model we specify is intractable; we develop an approximate inference technique, which combines importance sampling with variational inference. Our technique has already been shown to be more consistent than both manual processing and another automated technique [N. D. Lawrence, et al., \\\"Reducing the Variability in cDNA Microarray Image Processing by Inference\\\"]. Here we present large-scale results for twenty-four microarray slides each representing 5760 genes and show the dramatic effects of incorporating variance in our downstream analysis. Software based on this algorithm is available for academic use.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"291 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基因表达测量量化每个基因产生的mRNA水平。有两种主要的方法用于生产用于提取这些水平的载玻片:光刻和点阵。斑点阵列格式的一个难点是确定阵列上斑点的大小和位置。在本文中,我们提出了一种贝叶斯方法来处理由这些阵列产生的图像,该阵列寻求斑点大小和位置的后验分布。这使我们能够估计表达比率及其方差。我们指定的模型的精确推断是难以处理的;我们开发了一种将重要抽样和变分推理相结合的近似推理技术。我们的技术已经被证明比手工处理和另一种自动化技术更加一致。D. Lawrence等人,“通过推理减少cDNA微阵列图像处理的可变性”。在这里,我们展示了24张微阵列载玻片的大规模结果,每张载玻片代表5760个基因,并显示了在我们的下游分析中纳入方差的巨大影响。基于该算法的软件可用于学术用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian processing of microarray images
Gene expression measurements quantify the level of mRNA produced from each gene. Two principal methods exist for producing slides for extracting these levels: photolithography and spotted arrays. One difficulty with the spotted array format is determining the size and location of the spots on the array. In this paper we present a Bayesian approach to processing images produced by these arrays that seeks posterior distributions over the size and positions of the spots. This enables us to estimate expression ratios and their variances. Exact inference for the model we specify is intractable; we develop an approximate inference technique, which combines importance sampling with variational inference. Our technique has already been shown to be more consistent than both manual processing and another automated technique [N. D. Lawrence, et al., "Reducing the Variability in cDNA Microarray Image Processing by Inference"]. Here we present large-scale results for twenty-four microarray slides each representing 5760 genes and show the dramatic effects of incorporating variance in our downstream analysis. Software based on this algorithm is available for academic use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信