基于状态相关Riccati方程的非线性模型预测控制

K. Belarbi, H. Boumaza, B. Boutamina
{"title":"基于状态相关Riccati方程的非线性模型预测控制","authors":"K. Belarbi, H. Boumaza, B. Boutamina","doi":"10.1109/STA.2014.7086742","DOIUrl":null,"url":null,"abstract":"In this work, we introduce an approach to nonlinear model predictive based on the so-called state dependent Riccati equation, SDRE. In this approach, the model is first cast in a form similar to the linear state space representation. Then the algebraic Riccati equation is constructed based on a similarity with the linear quadratic regulator to obtain stable NMPC. The method requires the solution of the Riccati equation at each sampling period. Simulation results are quite encourageing.","PeriodicalId":125957,"journal":{"name":"2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear model predictive control based on state dependent Riccati equation\",\"authors\":\"K. Belarbi, H. Boumaza, B. Boutamina\",\"doi\":\"10.1109/STA.2014.7086742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce an approach to nonlinear model predictive based on the so-called state dependent Riccati equation, SDRE. In this approach, the model is first cast in a form similar to the linear state space representation. Then the algebraic Riccati equation is constructed based on a similarity with the linear quadratic regulator to obtain stable NMPC. The method requires the solution of the Riccati equation at each sampling period. Simulation results are quite encourageing.\",\"PeriodicalId\":125957,\"journal\":{\"name\":\"2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STA.2014.7086742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA.2014.7086742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们介绍了一种基于所谓的状态相关Riccati方程(SDRE)的非线性模型预测方法。在这种方法中,首先将模型转换为类似于线性状态空间表示的形式。然后基于与线性二次型调节器的相似性构造代数Riccati方程,得到稳定的NMPC。该方法要求在每个采样周期求得Riccati方程的解。仿真结果相当令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear model predictive control based on state dependent Riccati equation
In this work, we introduce an approach to nonlinear model predictive based on the so-called state dependent Riccati equation, SDRE. In this approach, the model is first cast in a form similar to the linear state space representation. Then the algebraic Riccati equation is constructed based on a similarity with the linear quadratic regulator to obtain stable NMPC. The method requires the solution of the Riccati equation at each sampling period. Simulation results are quite encourageing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信