深度MLP架构对资源不足语音识别中不同声学建模技术的影响

David Imseng, P. Motlícek, Philip N. Garner, H. Bourlard
{"title":"深度MLP架构对资源不足语音识别中不同声学建模技术的影响","authors":"David Imseng, P. Motlícek, Philip N. Garner, H. Bourlard","doi":"10.1109/ASRU.2013.6707752","DOIUrl":null,"url":null,"abstract":"Posterior based acoustic modeling techniques such as Kullback-Leibler divergence based HMM (KL-HMM) and Tandem are able to exploit out-of-language data through posterior features, estimated by a Multi-Layer Perceptron (MLP). In this paper, we investigate the performance of posterior based approaches in the context of under-resourced speech recognition when a standard three-layer MLP is replaced by a deeper five-layer MLP. The deeper MLP architecture yields similar gains of about 15% (relative) for Tandem, KL-HMM as well as for a hybrid HMM/MLP system that directly uses the posterior estimates as emission probabilities. The best performing system, a bilingual KL-HMM based on a deep MLP, jointly trained on Afrikaans and Dutch data, performs 13% better than a hybrid system using the same bilingual MLP and 26% better than a subspace Gaussian mixture system only trained on Afrikaans data.","PeriodicalId":265258,"journal":{"name":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","volume":"2677 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Impact of deep MLP architecture on different acoustic modeling techniques for under-resourced speech recognition\",\"authors\":\"David Imseng, P. Motlícek, Philip N. Garner, H. Bourlard\",\"doi\":\"10.1109/ASRU.2013.6707752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Posterior based acoustic modeling techniques such as Kullback-Leibler divergence based HMM (KL-HMM) and Tandem are able to exploit out-of-language data through posterior features, estimated by a Multi-Layer Perceptron (MLP). In this paper, we investigate the performance of posterior based approaches in the context of under-resourced speech recognition when a standard three-layer MLP is replaced by a deeper five-layer MLP. The deeper MLP architecture yields similar gains of about 15% (relative) for Tandem, KL-HMM as well as for a hybrid HMM/MLP system that directly uses the posterior estimates as emission probabilities. The best performing system, a bilingual KL-HMM based on a deep MLP, jointly trained on Afrikaans and Dutch data, performs 13% better than a hybrid system using the same bilingual MLP and 26% better than a subspace Gaussian mixture system only trained on Afrikaans data.\",\"PeriodicalId\":265258,\"journal\":{\"name\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"volume\":\"2677 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2013.6707752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2013.6707752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

基于后验的声学建模技术,如基于Kullback-Leibler散度的HMM (KL-HMM)和Tandem,能够通过多层感知器(MLP)估计的后验特征来利用语言外数据。在本文中,我们研究了在资源不足的语音识别背景下,当标准的三层MLP被更深的五层MLP取代时,基于后验的方法的性能。对于Tandem、KL-HMM以及直接使用后验估计作为发射概率的混合HMM/MLP系统,更深层次的MLP架构产生了类似的15%(相对)增益。表现最好的系统是基于深度MLP的双语KL-HMM,它在南非荷兰语和荷兰语数据上进行了联合训练,比使用相同双语MLP的混合系统性能好13%,比仅在南非荷兰语数据上训练的子空间高斯混合系统性能好26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of deep MLP architecture on different acoustic modeling techniques for under-resourced speech recognition
Posterior based acoustic modeling techniques such as Kullback-Leibler divergence based HMM (KL-HMM) and Tandem are able to exploit out-of-language data through posterior features, estimated by a Multi-Layer Perceptron (MLP). In this paper, we investigate the performance of posterior based approaches in the context of under-resourced speech recognition when a standard three-layer MLP is replaced by a deeper five-layer MLP. The deeper MLP architecture yields similar gains of about 15% (relative) for Tandem, KL-HMM as well as for a hybrid HMM/MLP system that directly uses the posterior estimates as emission probabilities. The best performing system, a bilingual KL-HMM based on a deep MLP, jointly trained on Afrikaans and Dutch data, performs 13% better than a hybrid system using the same bilingual MLP and 26% better than a subspace Gaussian mixture system only trained on Afrikaans data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信