用于索引优化的基于表的KNN

T. Jo
{"title":"用于索引优化的基于表的KNN","authors":"T. Jo","doi":"10.1109/ICACT.2016.7423525","DOIUrl":null,"url":null,"abstract":"We concern this research with the table based KNN as the approach to the index optimization task. It may be interpreted into an instance of word classification, and the encoding scheme where words are encoded into tables improved the task word classification. In this research, words are encoded into tables and apply the table based KNN to the index optimization task. From this research, we expect the better and more stable performance than the traditional version, in this task. Therefore, this research is intended to provide the improved index optimization scheme.","PeriodicalId":125854,"journal":{"name":"2016 18th International Conference on Advanced Communication Technology (ICACT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Table based KNN for index optimization\",\"authors\":\"T. Jo\",\"doi\":\"10.1109/ICACT.2016.7423525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We concern this research with the table based KNN as the approach to the index optimization task. It may be interpreted into an instance of word classification, and the encoding scheme where words are encoded into tables improved the task word classification. In this research, words are encoded into tables and apply the table based KNN to the index optimization task. From this research, we expect the better and more stable performance than the traditional version, in this task. Therefore, this research is intended to provide the improved index optimization scheme.\",\"PeriodicalId\":125854,\"journal\":{\"name\":\"2016 18th International Conference on Advanced Communication Technology (ICACT)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Conference on Advanced Communication Technology (ICACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACT.2016.7423525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACT.2016.7423525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们将基于表的KNN作为索引优化任务的方法。它可以被解释为单词分类的实例,并且将单词编码到表中的编码方案改进了任务单词分类。在本研究中,将单词编码到表中,并将基于表的KNN应用于索引优化任务。通过本次研究,我们期望在本次任务中,能有比传统版本更好、更稳定的性能。因此,本研究旨在提供改进的索引优化方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Table based KNN for index optimization
We concern this research with the table based KNN as the approach to the index optimization task. It may be interpreted into an instance of word classification, and the encoding scheme where words are encoded into tables improved the task word classification. In this research, words are encoded into tables and apply the table based KNN to the index optimization task. From this research, we expect the better and more stable performance than the traditional version, in this task. Therefore, this research is intended to provide the improved index optimization scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信