Tony F. Wu, B. Le, R. Radway, Andrew Bartolo, William Hwang, Seung-Kook Jeong, Haitong Li, Pulkit Tandon, E. Vianello, P. Vivet, E. Nowak, Mary Wootters, H. Wong, M. Aly, E. Beigné, S. Mitra
{"title":"14.3集成2.3位/单元电阻式RAM和弹性技术的4.7μs关机/唤醒43pJ/Cycle非易失性微控制器","authors":"Tony F. Wu, B. Le, R. Radway, Andrew Bartolo, William Hwang, Seung-Kook Jeong, Haitong Li, Pulkit Tandon, E. Vianello, P. Vivet, E. Nowak, Mary Wootters, H. Wong, M. Aly, E. Beigné, S. Mitra","doi":"10.1109/ISSCC.2019.8662402","DOIUrl":null,"url":null,"abstract":"Non-volatility is emerging as an essential on-chip memory characteristic across a wide range of application domains, from edge nodes for the Internet of Things (IoT) to large computing clusters. On-chip non-volatile memory (NVM) is critical for low-energy operation, real-time responses, privacy and security, operation in unpredictable environments, and fault-tolerance [1]. Existing on-chip NVMs (e.g., Flash, FRAM, EEPROM) suffer from high read/write energy/latency, density, and integration challenges [1]. For example, an ideal IoT edge system would employ fine-grained temporal power gating (i.e., shutdown) between active modes. However, existing on-chip Flash can have long latencies (> 23 ms latency for erase followed by write), while inter-sample arrival times can be short (e.g., 2ms in [2]).","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"14.3 A 43pJ/Cycle Non-Volatile Microcontroller with 4.7μs Shutdown/Wake-up Integrating 2.3-bit/Cell Resistive RAM and Resilience Techniques\",\"authors\":\"Tony F. Wu, B. Le, R. Radway, Andrew Bartolo, William Hwang, Seung-Kook Jeong, Haitong Li, Pulkit Tandon, E. Vianello, P. Vivet, E. Nowak, Mary Wootters, H. Wong, M. Aly, E. Beigné, S. Mitra\",\"doi\":\"10.1109/ISSCC.2019.8662402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-volatility is emerging as an essential on-chip memory characteristic across a wide range of application domains, from edge nodes for the Internet of Things (IoT) to large computing clusters. On-chip non-volatile memory (NVM) is critical for low-energy operation, real-time responses, privacy and security, operation in unpredictable environments, and fault-tolerance [1]. Existing on-chip NVMs (e.g., Flash, FRAM, EEPROM) suffer from high read/write energy/latency, density, and integration challenges [1]. For example, an ideal IoT edge system would employ fine-grained temporal power gating (i.e., shutdown) between active modes. However, existing on-chip Flash can have long latencies (> 23 ms latency for erase followed by write), while inter-sample arrival times can be short (e.g., 2ms in [2]).\",\"PeriodicalId\":265551,\"journal\":{\"name\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2019.8662402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
14.3 A 43pJ/Cycle Non-Volatile Microcontroller with 4.7μs Shutdown/Wake-up Integrating 2.3-bit/Cell Resistive RAM and Resilience Techniques
Non-volatility is emerging as an essential on-chip memory characteristic across a wide range of application domains, from edge nodes for the Internet of Things (IoT) to large computing clusters. On-chip non-volatile memory (NVM) is critical for low-energy operation, real-time responses, privacy and security, operation in unpredictable environments, and fault-tolerance [1]. Existing on-chip NVMs (e.g., Flash, FRAM, EEPROM) suffer from high read/write energy/latency, density, and integration challenges [1]. For example, an ideal IoT edge system would employ fine-grained temporal power gating (i.e., shutdown) between active modes. However, existing on-chip Flash can have long latencies (> 23 ms latency for erase followed by write), while inter-sample arrival times can be short (e.g., 2ms in [2]).