{"title":"基于自适应KNN和SVD的扩展协同过滤推荐系统","authors":"Sagedur Rahman","doi":"10.31033/ijemr.13.4.14","DOIUrl":null,"url":null,"abstract":"In recent years, recommendation systems have gained significant importance due to the vast amount of digital content available on various online platforms. Collaborative filtering is a widely adopted approach in recommendation systems, leveraging user-item interactions to make personalized predictions. However, traditional collaborative filtering methods face challenges such as the cold-start problem and data sparsity. To address these issues, researchers have proposed advanced techniques, including Adaptive KNN-Based and SVD-Based Extended Collaborative Filtering. This paper provides a comprehensive review of these two recommendation systems, discussing their underlying principles, advantages, and limitations. Furthermore, we explore recent research advancements and real-world applications, providing insights into the potential future developments in this field.","PeriodicalId":421022,"journal":{"name":"International Journal of Engineering and Management Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Collaborative Filtering Recommendation System with Adaptive KNN and SVD\",\"authors\":\"Sagedur Rahman\",\"doi\":\"10.31033/ijemr.13.4.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, recommendation systems have gained significant importance due to the vast amount of digital content available on various online platforms. Collaborative filtering is a widely adopted approach in recommendation systems, leveraging user-item interactions to make personalized predictions. However, traditional collaborative filtering methods face challenges such as the cold-start problem and data sparsity. To address these issues, researchers have proposed advanced techniques, including Adaptive KNN-Based and SVD-Based Extended Collaborative Filtering. This paper provides a comprehensive review of these two recommendation systems, discussing their underlying principles, advantages, and limitations. Furthermore, we explore recent research advancements and real-world applications, providing insights into the potential future developments in this field.\",\"PeriodicalId\":421022,\"journal\":{\"name\":\"International Journal of Engineering and Management Research\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Management Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31033/ijemr.13.4.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Management Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31033/ijemr.13.4.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extended Collaborative Filtering Recommendation System with Adaptive KNN and SVD
In recent years, recommendation systems have gained significant importance due to the vast amount of digital content available on various online platforms. Collaborative filtering is a widely adopted approach in recommendation systems, leveraging user-item interactions to make personalized predictions. However, traditional collaborative filtering methods face challenges such as the cold-start problem and data sparsity. To address these issues, researchers have proposed advanced techniques, including Adaptive KNN-Based and SVD-Based Extended Collaborative Filtering. This paper provides a comprehensive review of these two recommendation systems, discussing their underlying principles, advantages, and limitations. Furthermore, we explore recent research advancements and real-world applications, providing insights into the potential future developments in this field.