高速结构光扫描系统与三维手势点云识别

Yin Zhou, Kai Liu, Jinglun Gao, K. Barner, F. Kiamilev
{"title":"高速结构光扫描系统与三维手势点云识别","authors":"Yin Zhou, Kai Liu, Jinglun Gao, K. Barner, F. Kiamilev","doi":"10.1109/CISS.2013.6552323","DOIUrl":null,"url":null,"abstract":"In computer-vision-based human computer interaction (HCI), higher-quality signal leads to better system performance. In this paper, we develop a real-time high-resolution 3D object scanning system based on structured light illumination (SLI). Our system fuses depth information with RGB texture to reconstruct high-resolution 3D point cloud. The point cloud preserves accurate surface geometry of the object (e.g., finger postures of hands, facial expressions, etc). Respectively, for a 640 × 480 video stream, our system can generate phase and texture video at 1500 frames per second (fps) and produce full 3D point clouds at 300 fps. For gesture recognition, we propose to combine the module of robust face recognition with the module of 3D point cloud classification. Moreover, rather than extracting sophisticated features, we leverage the accurate reconstruction and classify each point cloud by directly matching the whole 3D surface geometry with the templates of different classes. The proposed recognition system is robust to the scaling, translation, rotation and texture of objects. Finally, utilizing the system, we contribute to the research community two large-scale high-resolution 3D point cloud databases, i.e., SLI 3D Hand Gesture Database and SLI 3D Face Database. The proposed point cloud recognition approach achieves recognition rates up to 98.0% over the gesture database and 88.2% over the face database in our pilot study.","PeriodicalId":268095,"journal":{"name":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"High-speed structured light scanning system and 3D gestural point cloud recognition\",\"authors\":\"Yin Zhou, Kai Liu, Jinglun Gao, K. Barner, F. Kiamilev\",\"doi\":\"10.1109/CISS.2013.6552323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In computer-vision-based human computer interaction (HCI), higher-quality signal leads to better system performance. In this paper, we develop a real-time high-resolution 3D object scanning system based on structured light illumination (SLI). Our system fuses depth information with RGB texture to reconstruct high-resolution 3D point cloud. The point cloud preserves accurate surface geometry of the object (e.g., finger postures of hands, facial expressions, etc). Respectively, for a 640 × 480 video stream, our system can generate phase and texture video at 1500 frames per second (fps) and produce full 3D point clouds at 300 fps. For gesture recognition, we propose to combine the module of robust face recognition with the module of 3D point cloud classification. Moreover, rather than extracting sophisticated features, we leverage the accurate reconstruction and classify each point cloud by directly matching the whole 3D surface geometry with the templates of different classes. The proposed recognition system is robust to the scaling, translation, rotation and texture of objects. Finally, utilizing the system, we contribute to the research community two large-scale high-resolution 3D point cloud databases, i.e., SLI 3D Hand Gesture Database and SLI 3D Face Database. The proposed point cloud recognition approach achieves recognition rates up to 98.0% over the gesture database and 88.2% over the face database in our pilot study.\",\"PeriodicalId\":268095,\"journal\":{\"name\":\"2013 47th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 47th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2013.6552323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2013.6552323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在基于计算机视觉的人机交互(HCI)中,信号质量越高,系统性能越好。本文开发了一种基于结构光照明(SLI)的实时高分辨率三维物体扫描系统。我们的系统融合了深度信息和RGB纹理来重建高分辨率的三维点云。点云保留物体的精确表面几何形状(例如,手的手指姿势,面部表情等)。对于640 × 480视频流,我们的系统可以以每秒1500帧(fps)的速度生成相位和纹理视频,并以每秒300帧(fps)的速度生成全3D点云。对于手势识别,我们提出将鲁棒人脸识别模块与三维点云分类模块相结合。此外,我们没有提取复杂的特征,而是利用精确的重建,通过将整个三维表面几何形状与不同类别的模板直接匹配,对每个点云进行分类。该识别系统对物体的缩放、平移、旋转和纹理具有鲁棒性。最后,利用该系统,我们向研究界贡献了两个大规模的高分辨率三维点云数据库,即SLI 3D手势数据库和SLI 3D人脸数据库。在我们的试点研究中,所提出的点云识别方法在手势数据库上的识别率高达98.0%,在人脸数据库上的识别率高达88.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-speed structured light scanning system and 3D gestural point cloud recognition
In computer-vision-based human computer interaction (HCI), higher-quality signal leads to better system performance. In this paper, we develop a real-time high-resolution 3D object scanning system based on structured light illumination (SLI). Our system fuses depth information with RGB texture to reconstruct high-resolution 3D point cloud. The point cloud preserves accurate surface geometry of the object (e.g., finger postures of hands, facial expressions, etc). Respectively, for a 640 × 480 video stream, our system can generate phase and texture video at 1500 frames per second (fps) and produce full 3D point clouds at 300 fps. For gesture recognition, we propose to combine the module of robust face recognition with the module of 3D point cloud classification. Moreover, rather than extracting sophisticated features, we leverage the accurate reconstruction and classify each point cloud by directly matching the whole 3D surface geometry with the templates of different classes. The proposed recognition system is robust to the scaling, translation, rotation and texture of objects. Finally, utilizing the system, we contribute to the research community two large-scale high-resolution 3D point cloud databases, i.e., SLI 3D Hand Gesture Database and SLI 3D Face Database. The proposed point cloud recognition approach achieves recognition rates up to 98.0% over the gesture database and 88.2% over the face database in our pilot study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信