基于混合多智能体的随需移动系统深度强化学习

Tobias Enders, James Harrison, M. Pavone, Maximilian Schiffer
{"title":"基于混合多智能体的随需移动系统深度强化学习","authors":"Tobias Enders, James Harrison, M. Pavone, Maximilian Schiffer","doi":"10.48550/arXiv.2212.07313","DOIUrl":null,"url":null,"abstract":"We consider the sequential decision-making problem of making proactive request assignment and rejection decisions for a profit-maximizing operator of an autonomous mobility on demand system. We formalize this problem as a Markov decision process and propose a novel combination of multi-agent Soft Actor-Critic and weighted bipartite matching to obtain an anticipative control policy. Thereby, we factorize the operator's otherwise intractable action space, but still obtain a globally coordinated decision. Experiments based on real-world taxi data show that our method outperforms state of the art benchmarks with respect to performance, stability, and computational tractability.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hybrid Multi-agent Deep Reinforcement Learning for Autonomous Mobility on Demand Systems\",\"authors\":\"Tobias Enders, James Harrison, M. Pavone, Maximilian Schiffer\",\"doi\":\"10.48550/arXiv.2212.07313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the sequential decision-making problem of making proactive request assignment and rejection decisions for a profit-maximizing operator of an autonomous mobility on demand system. We formalize this problem as a Markov decision process and propose a novel combination of multi-agent Soft Actor-Critic and weighted bipartite matching to obtain an anticipative control policy. Thereby, we factorize the operator's otherwise intractable action space, but still obtain a globally coordinated decision. Experiments based on real-world taxi data show that our method outperforms state of the art benchmarks with respect to performance, stability, and computational tractability.\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.07313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.07313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

考虑了利润最大化的自动随需移动系统的主动请求分配和拒绝决策的顺序决策问题。我们将该问题形式化为一个马尔可夫决策过程,并提出了一种新的多智能体软行为者-批评家和加权二部匹配的组合来获得一个预期的控制策略。因此,我们分解了算子的难以处理的动作空间,但仍然得到一个全局协调的决策。基于真实出租车数据的实验表明,我们的方法在性能、稳定性和计算可追溯性方面优于最先进的基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Multi-agent Deep Reinforcement Learning for Autonomous Mobility on Demand Systems
We consider the sequential decision-making problem of making proactive request assignment and rejection decisions for a profit-maximizing operator of an autonomous mobility on demand system. We formalize this problem as a Markov decision process and propose a novel combination of multi-agent Soft Actor-Critic and weighted bipartite matching to obtain an anticipative control policy. Thereby, we factorize the operator's otherwise intractable action space, but still obtain a globally coordinated decision. Experiments based on real-world taxi data show that our method outperforms state of the art benchmarks with respect to performance, stability, and computational tractability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信