{"title":"磁场测绘作为无人机室内导航系统的支撑","authors":"Bartosz Brzozowski, Krzysztof Kaźmierczak","doi":"10.1109/METROAEROSPACE.2017.7999535","DOIUrl":null,"url":null,"abstract":"Safe indoor flights of unmanned aerial vehicles (UAVs) requires an independent measurement systems, that will enable efficient navigation in the absence of GPS data. One of the many solutions currently being developed is the use of information about changes in the value of the local magnetic field. This paper presents ways of recording, visualizing and mapping local magnetic field changes that can be used as a support for indoor navigation systems. At the beginning we reviewed devices for acquisition of magnetic field strength and the type of data being recorded. In the next step we analyzed the possibilities of visualization of acquired data. Finally the methods used to generate magnetic field maps of enclosed areas have been presented. In each of the aspects covered in this paper, solutions developed by the authors will be described.","PeriodicalId":229414,"journal":{"name":"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Magnetic field mapping as a support for UAV indoor navigation system\",\"authors\":\"Bartosz Brzozowski, Krzysztof Kaźmierczak\",\"doi\":\"10.1109/METROAEROSPACE.2017.7999535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Safe indoor flights of unmanned aerial vehicles (UAVs) requires an independent measurement systems, that will enable efficient navigation in the absence of GPS data. One of the many solutions currently being developed is the use of information about changes in the value of the local magnetic field. This paper presents ways of recording, visualizing and mapping local magnetic field changes that can be used as a support for indoor navigation systems. At the beginning we reviewed devices for acquisition of magnetic field strength and the type of data being recorded. In the next step we analyzed the possibilities of visualization of acquired data. Finally the methods used to generate magnetic field maps of enclosed areas have been presented. In each of the aspects covered in this paper, solutions developed by the authors will be described.\",\"PeriodicalId\":229414,\"journal\":{\"name\":\"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/METROAEROSPACE.2017.7999535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METROAEROSPACE.2017.7999535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetic field mapping as a support for UAV indoor navigation system
Safe indoor flights of unmanned aerial vehicles (UAVs) requires an independent measurement systems, that will enable efficient navigation in the absence of GPS data. One of the many solutions currently being developed is the use of information about changes in the value of the local magnetic field. This paper presents ways of recording, visualizing and mapping local magnetic field changes that can be used as a support for indoor navigation systems. At the beginning we reviewed devices for acquisition of magnetic field strength and the type of data being recorded. In the next step we analyzed the possibilities of visualization of acquired data. Finally the methods used to generate magnetic field maps of enclosed areas have been presented. In each of the aspects covered in this paper, solutions developed by the authors will be described.