主流vs.新兴HPC:度量、权衡和经验教训

M. Radulovic, Kazi Asifuzzaman, D. Zivanovic, Nikola Rajovic, G. C. D. Verdière, D. Pleiter, M. Marazakis, Nikolaos D. Kallimanis, P. Carpenter, Petar Radojkovic, E. Ayguadé
{"title":"主流vs.新兴HPC:度量、权衡和经验教训","authors":"M. Radulovic, Kazi Asifuzzaman, D. Zivanovic, Nikola Rajovic, G. C. D. Verdière, D. Pleiter, M. Marazakis, Nikolaos D. Kallimanis, P. Carpenter, Petar Radojkovic, E. Ayguadé","doi":"10.1109/CAHPC.2018.8645891","DOIUrl":null,"url":null,"abstract":"Various servers with different characteristics and architectures are hitting the market, and their evaluation and comparison in terms of HPC features is complex and multidimensional. In this paper, we share our experience of evaluating a diverse set of HPC systems, consisting of three mainstream and five emerging architectures. We evaluate the performance and power efficiency using prominent HPC benchmarks, High-Performance Linpack (HPL) and High Performance Conjugate Gradients (HPCG), and expand our analysis using publicly available specialized kernel benchmarks, targeting specific system components. In addition to a large body of quantitative results, we emphasize six usually overlooked aspects of the HPC platforms evaluation, and share our conclusions and lessons learned. Overall, we believe that this paper will improve the evaluation and comparison of HPC platforms, making a first step towards a more reliable and uniform methodology.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mainstream vs. Emerging HPC: Metrics, Trade-Offs and Lessons Learned\",\"authors\":\"M. Radulovic, Kazi Asifuzzaman, D. Zivanovic, Nikola Rajovic, G. C. D. Verdière, D. Pleiter, M. Marazakis, Nikolaos D. Kallimanis, P. Carpenter, Petar Radojkovic, E. Ayguadé\",\"doi\":\"10.1109/CAHPC.2018.8645891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various servers with different characteristics and architectures are hitting the market, and their evaluation and comparison in terms of HPC features is complex and multidimensional. In this paper, we share our experience of evaluating a diverse set of HPC systems, consisting of three mainstream and five emerging architectures. We evaluate the performance and power efficiency using prominent HPC benchmarks, High-Performance Linpack (HPL) and High Performance Conjugate Gradients (HPCG), and expand our analysis using publicly available specialized kernel benchmarks, targeting specific system components. In addition to a large body of quantitative results, we emphasize six usually overlooked aspects of the HPC platforms evaluation, and share our conclusions and lessons learned. Overall, we believe that this paper will improve the evaluation and comparison of HPC platforms, making a first step towards a more reliable and uniform methodology.\",\"PeriodicalId\":307747,\"journal\":{\"name\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAHPC.2018.8645891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2018.8645891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

市场上各种不同特性和架构的服务器层出不穷,它们在高性能计算特性方面的评估和比较是复杂和多维的。在本文中,我们分享了我们评估多种HPC系统的经验,包括三种主流架构和五种新兴架构。我们使用著名的HPC基准,高性能Linpack (HPL)和高性能共轭梯度(HPCG)来评估性能和功率效率,并使用公开可用的专门内核基准来扩展我们的分析,针对特定的系统组件。除了大量的定量结果外,我们还强调了HPC平台评估中通常被忽视的六个方面,并分享了我们的结论和经验教训。总的来说,我们相信本文将改进高性能计算平台的评估和比较,朝着更可靠和统一的方法迈出第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mainstream vs. Emerging HPC: Metrics, Trade-Offs and Lessons Learned
Various servers with different characteristics and architectures are hitting the market, and their evaluation and comparison in terms of HPC features is complex and multidimensional. In this paper, we share our experience of evaluating a diverse set of HPC systems, consisting of three mainstream and five emerging architectures. We evaluate the performance and power efficiency using prominent HPC benchmarks, High-Performance Linpack (HPL) and High Performance Conjugate Gradients (HPCG), and expand our analysis using publicly available specialized kernel benchmarks, targeting specific system components. In addition to a large body of quantitative results, we emphasize six usually overlooked aspects of the HPC platforms evaluation, and share our conclusions and lessons learned. Overall, we believe that this paper will improve the evaluation and comparison of HPC platforms, making a first step towards a more reliable and uniform methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信