基于SRAM cim的加速器配置搜索的强化学习方法

Bo-Xi Lai, Shih-Hsu Huang, Hsu-Yu Kao
{"title":"基于SRAM cim的加速器配置搜索的强化学习方法","authors":"Bo-Xi Lai, Shih-Hsu Huang, Hsu-Yu Kao","doi":"10.1109/ICCE-Taiwan55306.2022.9869149","DOIUrl":null,"url":null,"abstract":"Computing-in-memories (CIM) is recognized as a useful design technique for eliminating the Von Neumann bottleneck. However, there is a need for circuit designers to determine the configuration (i.e., design parameters) of CIM-based accelerators. Note that the configuration has influences on circuit area, throughput, and energy efficiency. In this paper, we focus on the SRAM CIM-based accelerator design. A reinforcement learning methodology is proposed to assist circuit designers to find the most suitable configuration. Experiment data show that the proposed methodology works well in practice.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Reinforcement Learning Methodology for The Search of SRAM CIM-based Accelerator Configuration\",\"authors\":\"Bo-Xi Lai, Shih-Hsu Huang, Hsu-Yu Kao\",\"doi\":\"10.1109/ICCE-Taiwan55306.2022.9869149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing-in-memories (CIM) is recognized as a useful design technique for eliminating the Von Neumann bottleneck. However, there is a need for circuit designers to determine the configuration (i.e., design parameters) of CIM-based accelerators. Note that the configuration has influences on circuit area, throughput, and energy efficiency. In this paper, we focus on the SRAM CIM-based accelerator design. A reinforcement learning methodology is proposed to assist circuit designers to find the most suitable configuration. Experiment data show that the proposed methodology works well in practice.\",\"PeriodicalId\":164671,\"journal\":{\"name\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

存储器中计算(CIM)被认为是消除冯·诺依曼瓶颈的一种有用的设计技术。然而,电路设计人员需要确定基于cim的加速器的配置(即设计参数)。请注意,配置对电路面积、吞吐量和能源效率有影响。本文主要研究基于SRAM的加速器设计。提出了一种强化学习方法来帮助电路设计者找到最合适的配置。实验数据表明,该方法在实际应用中效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Reinforcement Learning Methodology for The Search of SRAM CIM-based Accelerator Configuration
Computing-in-memories (CIM) is recognized as a useful design technique for eliminating the Von Neumann bottleneck. However, there is a need for circuit designers to determine the configuration (i.e., design parameters) of CIM-based accelerators. Note that the configuration has influences on circuit area, throughput, and energy efficiency. In this paper, we focus on the SRAM CIM-based accelerator design. A reinforcement learning methodology is proposed to assist circuit designers to find the most suitable configuration. Experiment data show that the proposed methodology works well in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信