STM32单片机中随机数发生器的侧信道分析

Kalle Ngo, E. Dubrova
{"title":"STM32单片机中随机数发生器的侧信道分析","authors":"Kalle Ngo, E. Dubrova","doi":"10.1145/3526241.3530324","DOIUrl":null,"url":null,"abstract":"The hardware random number generator (RNG) integrated in STM32 MCUs is intended to ensure that the numbers it generates cannot be guessed with a probability higher than a random guess. The RNG is based on several ring oscillators whose outputs are combined and post-processed to produce a 32-bit random number per round of computation. In this paper, we show that it is possible to train a neural network capable of recovering the Hamming weight of these random numbers from power traces with a higher than 60% probability. This is a 4-fold improvement over the 14% probability of the most likely Hamming weight.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Side-Channel Analysis of the Random Number Generator in STM32 MCUs\",\"authors\":\"Kalle Ngo, E. Dubrova\",\"doi\":\"10.1145/3526241.3530324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hardware random number generator (RNG) integrated in STM32 MCUs is intended to ensure that the numbers it generates cannot be guessed with a probability higher than a random guess. The RNG is based on several ring oscillators whose outputs are combined and post-processed to produce a 32-bit random number per round of computation. In this paper, we show that it is possible to train a neural network capable of recovering the Hamming weight of these random numbers from power traces with a higher than 60% probability. This is a 4-fold improvement over the 14% probability of the most likely Hamming weight.\",\"PeriodicalId\":188228,\"journal\":{\"name\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526241.3530324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

集成在STM32 mcu中的硬件随机数生成器(RNG)旨在确保其生成的数字不会以高于随机猜测的概率被猜出。RNG基于几个环形振荡器,它们的输出经过组合和后处理,每轮计算产生一个32位随机数。在本文中,我们证明了有可能训练一个能够以高于60%的概率从功率走线恢复这些随机数的汉明权值的神经网络。这比最可能的汉明权重14%的概率提高了4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Side-Channel Analysis of the Random Number Generator in STM32 MCUs
The hardware random number generator (RNG) integrated in STM32 MCUs is intended to ensure that the numbers it generates cannot be guessed with a probability higher than a random guess. The RNG is based on several ring oscillators whose outputs are combined and post-processed to produce a 32-bit random number per round of computation. In this paper, we show that it is possible to train a neural network capable of recovering the Hamming weight of these random numbers from power traces with a higher than 60% probability. This is a 4-fold improvement over the 14% probability of the most likely Hamming weight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信