{"title":"二维随机自组织无线网络的尺度规律","authors":"A. Ozgur, O. Lévêque","doi":"10.1109/IZS.2006.1649090","DOIUrl":null,"url":null,"abstract":"We derive an information theoretic scaling law for the maximum achievable rate per communication pair in a two-dimensional random ad-hoc wireless network. Our scaling law holds for non-absorptive media and when the path loss exponent (describing the decay of the amplitude of the signal) is between 1 and 2. The key ingredient of our result is the recently established information theoretic scaling law for one-dimensional ad-hoc wireless networks in the attenuation regime of interest","PeriodicalId":405389,"journal":{"name":"2006 International Zurich Seminar on Communications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scaling Laws for Two-Dimensional Random Ad-Hoc Wireless Networks\",\"authors\":\"A. Ozgur, O. Lévêque\",\"doi\":\"10.1109/IZS.2006.1649090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive an information theoretic scaling law for the maximum achievable rate per communication pair in a two-dimensional random ad-hoc wireless network. Our scaling law holds for non-absorptive media and when the path loss exponent (describing the decay of the amplitude of the signal) is between 1 and 2. The key ingredient of our result is the recently established information theoretic scaling law for one-dimensional ad-hoc wireless networks in the attenuation regime of interest\",\"PeriodicalId\":405389,\"journal\":{\"name\":\"2006 International Zurich Seminar on Communications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Zurich Seminar on Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IZS.2006.1649090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Zurich Seminar on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IZS.2006.1649090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scaling Laws for Two-Dimensional Random Ad-Hoc Wireless Networks
We derive an information theoretic scaling law for the maximum achievable rate per communication pair in a two-dimensional random ad-hoc wireless network. Our scaling law holds for non-absorptive media and when the path loss exponent (describing the decay of the amplitude of the signal) is between 1 and 2. The key ingredient of our result is the recently established information theoretic scaling law for one-dimensional ad-hoc wireless networks in the attenuation regime of interest