结合权重属性在检测网络垃圾邮件

A. G. K. Leng, K. P. Ravi, Ashutosh Kumar Singh
{"title":"结合权重属性在检测网络垃圾邮件","authors":"A. G. K. Leng, K. P. Ravi, Ashutosh Kumar Singh","doi":"10.1109/URKE.2012.6319540","DOIUrl":null,"url":null,"abstract":"This paper focus on incorporating weight properties to enhance Web spam detection algorithms. Our proposed methodology adds this feature into Anti-TrustRank algorithm and call it weighted Anti-TrustRank algorithm to show the effectiveness of the weight properties using a new metric. Experiments are conducted on WEBSPAM-UK2006, a public Web spam dataset and have shown that weighted Anti-TrustRank significantly outperforms Anti-TrustRank algorithm up to 37.85%.","PeriodicalId":277189,"journal":{"name":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Incorporating weight properties in detection of web spam\",\"authors\":\"A. G. K. Leng, K. P. Ravi, Ashutosh Kumar Singh\",\"doi\":\"10.1109/URKE.2012.6319540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focus on incorporating weight properties to enhance Web spam detection algorithms. Our proposed methodology adds this feature into Anti-TrustRank algorithm and call it weighted Anti-TrustRank algorithm to show the effectiveness of the weight properties using a new metric. Experiments are conducted on WEBSPAM-UK2006, a public Web spam dataset and have shown that weighted Anti-TrustRank significantly outperforms Anti-TrustRank algorithm up to 37.85%.\",\"PeriodicalId\":277189,\"journal\":{\"name\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URKE.2012.6319540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URKE.2012.6319540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的重点是结合权重属性来增强Web垃圾邮件检测算法。我们提出的方法将这一特征添加到Anti-TrustRank算法中,并将其称为加权Anti-TrustRank算法,以使用新的度量来显示权重属性的有效性。在WEBSPAM-UK2006(一个公开的Web垃圾邮件数据集)上进行的实验表明,加权Anti-TrustRank算法的性能显著优于Anti-TrustRank算法,达到37.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating weight properties in detection of web spam
This paper focus on incorporating weight properties to enhance Web spam detection algorithms. Our proposed methodology adds this feature into Anti-TrustRank algorithm and call it weighted Anti-TrustRank algorithm to show the effectiveness of the weight properties using a new metric. Experiments are conducted on WEBSPAM-UK2006, a public Web spam dataset and have shown that weighted Anti-TrustRank significantly outperforms Anti-TrustRank algorithm up to 37.85%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信