{"title":"高效的数据并行文件通过自动模式检测","authors":"J. Moore, P. Hatcher, M. J. Quinn","doi":"10.1145/236017.236025","DOIUrl":null,"url":null,"abstract":"Parallel languages rarely specify parallel I/O constructs, and existing commercial systems provide the programmer with a low-level I/O interface. We present design principles for integrating I/O into languages and show how these principles are applied to a virtual-processor-oriented language. We show how machine-independent modes are used to support both high performance and generality. We describe an automatic mode detection technique that saves the programmer from extra syntax and low-level file system details. We show how virtual processor file operations, typically small by themselves, are combined into efficient large-scale file system calls. Finally, we present a variety of benchmark results detailing design tradeoffs and the performance of various modes.","PeriodicalId":442608,"journal":{"name":"Workshop on I/O in Parallel and Distributed Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient data-parallel files via automatic mode detection\",\"authors\":\"J. Moore, P. Hatcher, M. J. Quinn\",\"doi\":\"10.1145/236017.236025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel languages rarely specify parallel I/O constructs, and existing commercial systems provide the programmer with a low-level I/O interface. We present design principles for integrating I/O into languages and show how these principles are applied to a virtual-processor-oriented language. We show how machine-independent modes are used to support both high performance and generality. We describe an automatic mode detection technique that saves the programmer from extra syntax and low-level file system details. We show how virtual processor file operations, typically small by themselves, are combined into efficient large-scale file system calls. Finally, we present a variety of benchmark results detailing design tradeoffs and the performance of various modes.\",\"PeriodicalId\":442608,\"journal\":{\"name\":\"Workshop on I/O in Parallel and Distributed Systems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on I/O in Parallel and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/236017.236025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on I/O in Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/236017.236025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient data-parallel files via automatic mode detection
Parallel languages rarely specify parallel I/O constructs, and existing commercial systems provide the programmer with a low-level I/O interface. We present design principles for integrating I/O into languages and show how these principles are applied to a virtual-processor-oriented language. We show how machine-independent modes are used to support both high performance and generality. We describe an automatic mode detection technique that saves the programmer from extra syntax and low-level file system details. We show how virtual processor file operations, typically small by themselves, are combined into efficient large-scale file system calls. Finally, we present a variety of benchmark results detailing design tradeoffs and the performance of various modes.