弱标记数据的随机神经形态学习机

E. Neftci
{"title":"弱标记数据的随机神经形态学习机","authors":"E. Neftci","doi":"10.1109/ICCD.2016.7753355","DOIUrl":null,"url":null,"abstract":"At learning tasks where humans typically outperform computers, neuromorphic learning machines can have potential advantages in learning in terms of power and complexity compared to mainstream technologies. Here, we present Synaptic Sampling Machines (S2M), a class of stochastic neural networks that use stochasticity at the connections (synapses) to implement energy efficient semi- and unsupervised learning for weakly or unlabeled data. Stochastic synapses play the dual role of a regularizer during learning and a mechanism for implementing stochasticity in neural networks. We show a S2M network architecture that is well suited for a dedicated digital implementation, that is potentially hundredfold more energy efficient compared to equivalent algorithms operating on GPUs.","PeriodicalId":297899,"journal":{"name":"2016 IEEE 34th International Conference on Computer Design (ICCD)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Stochastic neuromorphic learning machines for weakly labeled data\",\"authors\":\"E. Neftci\",\"doi\":\"10.1109/ICCD.2016.7753355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At learning tasks where humans typically outperform computers, neuromorphic learning machines can have potential advantages in learning in terms of power and complexity compared to mainstream technologies. Here, we present Synaptic Sampling Machines (S2M), a class of stochastic neural networks that use stochasticity at the connections (synapses) to implement energy efficient semi- and unsupervised learning for weakly or unlabeled data. Stochastic synapses play the dual role of a regularizer during learning and a mechanism for implementing stochasticity in neural networks. We show a S2M network architecture that is well suited for a dedicated digital implementation, that is potentially hundredfold more energy efficient compared to equivalent algorithms operating on GPUs.\",\"PeriodicalId\":297899,\"journal\":{\"name\":\"2016 IEEE 34th International Conference on Computer Design (ICCD)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 34th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2016.7753355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 34th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2016.7753355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在人类通常胜过计算机的学习任务中,与主流技术相比,神经形态学习机器在学习能力和复杂性方面具有潜在的优势。在这里,我们提出了突触采样机(S2M),这是一类随机神经网络,它利用连接(突触)的随机性来实现对弱或未标记数据的节能半监督和无监督学习。随机突触在学习过程中扮演着正则化器的双重角色,同时也是神经网络中实现随机性的机制。我们展示了一个非常适合专用数字实现的S2M网络架构,与在gpu上运行的等效算法相比,它的能源效率可能高出百倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic neuromorphic learning machines for weakly labeled data
At learning tasks where humans typically outperform computers, neuromorphic learning machines can have potential advantages in learning in terms of power and complexity compared to mainstream technologies. Here, we present Synaptic Sampling Machines (S2M), a class of stochastic neural networks that use stochasticity at the connections (synapses) to implement energy efficient semi- and unsupervised learning for weakly or unlabeled data. Stochastic synapses play the dual role of a regularizer during learning and a mechanism for implementing stochasticity in neural networks. We show a S2M network architecture that is well suited for a dedicated digital implementation, that is potentially hundredfold more energy efficient compared to equivalent algorithms operating on GPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信