一种心电多分类的集成方法

Chao-Xin Xie, Minghui Fan, Liang-Hung Wang, Pao-Cheng Huang
{"title":"一种心电多分类的集成方法","authors":"Chao-Xin Xie, Minghui Fan, Liang-Hung Wang, Pao-Cheng Huang","doi":"10.1109/ICCE-Taiwan55306.2022.9869291","DOIUrl":null,"url":null,"abstract":"The application of artificial intelligence to the diagnosis of ECG is of great significance. We combine machine learning algorithm with deep learning algorithm to give full play to the advantages of different algorithms by ensemble learning. Finally, we fuse the selected models so that the accuracy of identifying five kinds of arrhythmias can reach 94%. Particularly, the accuracy of class F beat which is difficult to identify has also been improved.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Integration Method for ECG Multi-Classification\",\"authors\":\"Chao-Xin Xie, Minghui Fan, Liang-Hung Wang, Pao-Cheng Huang\",\"doi\":\"10.1109/ICCE-Taiwan55306.2022.9869291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of artificial intelligence to the diagnosis of ECG is of great significance. We combine machine learning algorithm with deep learning algorithm to give full play to the advantages of different algorithms by ensemble learning. Finally, we fuse the selected models so that the accuracy of identifying five kinds of arrhythmias can reach 94%. Particularly, the accuracy of class F beat which is difficult to identify has also been improved.\",\"PeriodicalId\":164671,\"journal\":{\"name\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能在心电图诊断中的应用具有重要意义。我们将机器学习算法与深度学习算法相结合,通过集成学习充分发挥不同算法的优势。最后对所选模型进行融合,使五种心律失常的识别准确率达到94%。特别是,难以识别的F类拍的精度也得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Integration Method for ECG Multi-Classification
The application of artificial intelligence to the diagnosis of ECG is of great significance. We combine machine learning algorithm with deep learning algorithm to give full play to the advantages of different algorithms by ensemble learning. Finally, we fuse the selected models so that the accuracy of identifying five kinds of arrhythmias can reach 94%. Particularly, the accuracy of class F beat which is difficult to identify has also been improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信