有效类别感知推荐的统一潜在因素模型

Zhu Sun, G. Guo, Jie Zhang, Chi Xu
{"title":"有效类别感知推荐的统一潜在因素模型","authors":"Zhu Sun, G. Guo, Jie Zhang, Chi Xu","doi":"10.1145/3079628.3079649","DOIUrl":null,"url":null,"abstract":"Our data analysis on real-world datasets shows that user preferences are intimately related with item categories, implying the non-negligible of category information for effective recommendation. Thus, in this paper, step by step we propose a unified item-category latent factor model by considering user-category, item-category and category-category interactions. Our approach can be applied to both the situations where an item belongs to either a single category (one-to-one) or multiple categories (one-to-many). Finally, empirical studies on the real-world datasets demonstrate the superiority of our approach in comparison with other counterparts.","PeriodicalId":216017,"journal":{"name":"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Unified Latent Factor Model for Effective Category-Aware Recommendation\",\"authors\":\"Zhu Sun, G. Guo, Jie Zhang, Chi Xu\",\"doi\":\"10.1145/3079628.3079649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our data analysis on real-world datasets shows that user preferences are intimately related with item categories, implying the non-negligible of category information for effective recommendation. Thus, in this paper, step by step we propose a unified item-category latent factor model by considering user-category, item-category and category-category interactions. Our approach can be applied to both the situations where an item belongs to either a single category (one-to-one) or multiple categories (one-to-many). Finally, empirical studies on the real-world datasets demonstrate the superiority of our approach in comparison with other counterparts.\",\"PeriodicalId\":216017,\"journal\":{\"name\":\"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3079628.3079649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079628.3079649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们对真实世界数据集的数据分析表明,用户偏好与商品类别密切相关,这意味着类别信息对于有效推荐是不可忽视的。因此,本文通过考虑用户-类别、项目-类别和类别-类别的交互作用,逐步提出了统一的项目-类别潜在因素模型。我们的方法可以应用于项目属于单一类别(一对一)或多个类别(一对多)的两种情况。最后,对现实世界数据集的实证研究表明,与其他同行相比,我们的方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Latent Factor Model for Effective Category-Aware Recommendation
Our data analysis on real-world datasets shows that user preferences are intimately related with item categories, implying the non-negligible of category information for effective recommendation. Thus, in this paper, step by step we propose a unified item-category latent factor model by considering user-category, item-category and category-category interactions. Our approach can be applied to both the situations where an item belongs to either a single category (one-to-one) or multiple categories (one-to-many). Finally, empirical studies on the real-world datasets demonstrate the superiority of our approach in comparison with other counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信