{"title":"一类非线性椭圆型问题的稳定混合有限元方法的后验误差估计","authors":"María González, Hiram Varela","doi":"10.1553/etna_vol55s706","DOIUrl":null,"url":null,"abstract":". In this paper we propose new adaptive stabilised mixed finite element methods for a nonlinear elliptic boundary value problem of second order in divergence form that appears, among other applications, in magnetostatics. The method is based on a three-field formulation that is augmented with suitable residual least-squares terms arising from the constitutive and equilibrium equations and from the equation that defines the gradient as an additional unknown. We show that the resulting scheme is well posed and obtain optimal error estimates. We also develop an a posteriori error analysis of residual type and derive a simple a posteriori error indicator which is reliable and locally efficient. Finally, we include several numerical experiments that confirm the theoretical results.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A posteriori error estimates for stabilised mixed finite element methods for a nonlinear elliptic problem\",\"authors\":\"María González, Hiram Varela\",\"doi\":\"10.1553/etna_vol55s706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we propose new adaptive stabilised mixed finite element methods for a nonlinear elliptic boundary value problem of second order in divergence form that appears, among other applications, in magnetostatics. The method is based on a three-field formulation that is augmented with suitable residual least-squares terms arising from the constitutive and equilibrium equations and from the equation that defines the gradient as an additional unknown. We show that the resulting scheme is well posed and obtain optimal error estimates. We also develop an a posteriori error analysis of residual type and derive a simple a posteriori error indicator which is reliable and locally efficient. Finally, we include several numerical experiments that confirm the theoretical results.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol55s706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol55s706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A posteriori error estimates for stabilised mixed finite element methods for a nonlinear elliptic problem
. In this paper we propose new adaptive stabilised mixed finite element methods for a nonlinear elliptic boundary value problem of second order in divergence form that appears, among other applications, in magnetostatics. The method is based on a three-field formulation that is augmented with suitable residual least-squares terms arising from the constitutive and equilibrium equations and from the equation that defines the gradient as an additional unknown. We show that the resulting scheme is well posed and obtain optimal error estimates. We also develop an a posteriori error analysis of residual type and derive a simple a posteriori error indicator which is reliable and locally efficient. Finally, we include several numerical experiments that confirm the theoretical results.