一类非线性椭圆型问题的稳定混合有限元方法的后验误差估计

María González, Hiram Varela
{"title":"一类非线性椭圆型问题的稳定混合有限元方法的后验误差估计","authors":"María González, Hiram Varela","doi":"10.1553/etna_vol55s706","DOIUrl":null,"url":null,"abstract":". In this paper we propose new adaptive stabilised mixed finite element methods for a nonlinear elliptic boundary value problem of second order in divergence form that appears, among other applications, in magnetostatics. The method is based on a three-field formulation that is augmented with suitable residual least-squares terms arising from the constitutive and equilibrium equations and from the equation that defines the gradient as an additional unknown. We show that the resulting scheme is well posed and obtain optimal error estimates. We also develop an a posteriori error analysis of residual type and derive a simple a posteriori error indicator which is reliable and locally efficient. Finally, we include several numerical experiments that confirm the theoretical results.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A posteriori error estimates for stabilised mixed finite element methods for a nonlinear elliptic problem\",\"authors\":\"María González, Hiram Varela\",\"doi\":\"10.1553/etna_vol55s706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we propose new adaptive stabilised mixed finite element methods for a nonlinear elliptic boundary value problem of second order in divergence form that appears, among other applications, in magnetostatics. The method is based on a three-field formulation that is augmented with suitable residual least-squares terms arising from the constitutive and equilibrium equations and from the equation that defines the gradient as an additional unknown. We show that the resulting scheme is well posed and obtain optimal error estimates. We also develop an a posteriori error analysis of residual type and derive a simple a posteriori error indicator which is reliable and locally efficient. Finally, we include several numerical experiments that confirm the theoretical results.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol55s706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol55s706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 本文提出了一种新的自适应稳定混合有限元方法,用于求解一类二阶发散形式的非线性椭圆边值问题。该方法基于三场公式,该公式由本构方程和平衡方程以及将梯度定义为附加未知的方程中产生的适当残差最小二乘项进行扩充。我们证明了所得到的方案是良好的,并获得了最优的误差估计。我们还建立了残差型的后验误差分析方法,并推导出一种简单、可靠、局部有效的后验误差指标。最后,我们进行了几个数值实验来证实理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A posteriori error estimates for stabilised mixed finite element methods for a nonlinear elliptic problem
. In this paper we propose new adaptive stabilised mixed finite element methods for a nonlinear elliptic boundary value problem of second order in divergence form that appears, among other applications, in magnetostatics. The method is based on a three-field formulation that is augmented with suitable residual least-squares terms arising from the constitutive and equilibrium equations and from the equation that defines the gradient as an additional unknown. We show that the resulting scheme is well posed and obtain optimal error estimates. We also develop an a posteriori error analysis of residual type and derive a simple a posteriori error indicator which is reliable and locally efficient. Finally, we include several numerical experiments that confirm the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信