波前传感的参考波设计

Wei-yu Chen, Anat Levin, Matthew O'Toole, Aswin C. Sankaranarayanan
{"title":"波前传感的参考波设计","authors":"Wei-yu Chen, Anat Levin, Matthew O'Toole, Aswin C. Sankaranarayanan","doi":"10.1109/ICCP51581.2021.9466263","DOIUrl":null,"url":null,"abstract":"One of the classical results in wavefront sensing is phase-shifting point diffraction interferometry (PS-PDI), where the phase of a wavefront is measured by interfering it with a planar reference created from the incident wave itself. The limiting drawback of this approach is that the planar reference, often created by passing light through a narrow pinhole, is dim and noise sensitive. We address this limitation with a novel approach called ReWave that uses a non-planar reference that is designed to be brighter. The reference wave is designed in a specific way that would still allow for analytic phase recovery, exploiting ideas of sparse phase retrieval algorithms. ReWave requires only four image intensity measurements and is significantly more robust to noise compared to PS-PDI. We validate the robustness and applicability of our approach using a suite of simulated and real results.","PeriodicalId":132124,"journal":{"name":"2021 IEEE International Conference on Computational Photography (ICCP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reference Wave Design for Wavefront Sensing\",\"authors\":\"Wei-yu Chen, Anat Levin, Matthew O'Toole, Aswin C. Sankaranarayanan\",\"doi\":\"10.1109/ICCP51581.2021.9466263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the classical results in wavefront sensing is phase-shifting point diffraction interferometry (PS-PDI), where the phase of a wavefront is measured by interfering it with a planar reference created from the incident wave itself. The limiting drawback of this approach is that the planar reference, often created by passing light through a narrow pinhole, is dim and noise sensitive. We address this limitation with a novel approach called ReWave that uses a non-planar reference that is designed to be brighter. The reference wave is designed in a specific way that would still allow for analytic phase recovery, exploiting ideas of sparse phase retrieval algorithms. ReWave requires only four image intensity measurements and is significantly more robust to noise compared to PS-PDI. We validate the robustness and applicability of our approach using a suite of simulated and real results.\",\"PeriodicalId\":132124,\"journal\":{\"name\":\"2021 IEEE International Conference on Computational Photography (ICCP)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Computational Photography (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP51581.2021.9466263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP51581.2021.9466263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

波前传感的经典结果之一是相移点衍射干涉法(PS-PDI),其中通过用入射波本身产生的平面参考干涉波前来测量波前的相位。这种方法的限制缺点是平面参考,通常是由光通过一个狭窄的针孔,是暗淡和噪声敏感。我们通过一种名为ReWave的新方法解决了这一限制,该方法使用非平面参考,设计得更亮。参考波以一种特殊的方式设计,仍然允许分析相位恢复,利用稀疏相位检索算法的思想。ReWave只需要四次图像强度测量,与PS-PDI相比,它对噪声的鲁棒性要强得多。我们使用一组模拟和实际结果验证了我们的方法的鲁棒性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reference Wave Design for Wavefront Sensing
One of the classical results in wavefront sensing is phase-shifting point diffraction interferometry (PS-PDI), where the phase of a wavefront is measured by interfering it with a planar reference created from the incident wave itself. The limiting drawback of this approach is that the planar reference, often created by passing light through a narrow pinhole, is dim and noise sensitive. We address this limitation with a novel approach called ReWave that uses a non-planar reference that is designed to be brighter. The reference wave is designed in a specific way that would still allow for analytic phase recovery, exploiting ideas of sparse phase retrieval algorithms. ReWave requires only four image intensity measurements and is significantly more robust to noise compared to PS-PDI. We validate the robustness and applicability of our approach using a suite of simulated and real results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信