好莱坞:在网络流量的移动图像中检测体积攻击

Samuel Kopmann, Hauke Heseding, M. Zitterbart
{"title":"好莱坞:在网络流量的移动图像中检测体积攻击","authors":"Samuel Kopmann, Hauke Heseding, M. Zitterbart","doi":"10.1109/LCN53696.2022.9843465","DOIUrl":null,"url":null,"abstract":"Fast detection of Distributed Denial of Service attacks is key for establishing appropriate countermeasures in order to protect potential targets. HollywooDDoS applies well-known techniques from movie classification to the challenge of DDoS detection. The proposed approach utilizes a traffic aggregation scheme representing traffic volumes between IP subnets as two-dimensional images, while preserving detection relevant traffic characteristics. These images serve as input for a convolutional neural network, learning IP address space distributions of both background and attack traffic intensities. It is shown that a real-world DDoS attack can be precisely detected on the time scale of milliseconds. We evaluate classification of images without temporal information about attack traffic development to outline the impact of image resolution and aggregation time frames. We then show that attack detection further improves by 17% when utilizing a consecutive series of images capturing traffic dynamics.","PeriodicalId":303965,"journal":{"name":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","volume":"31 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HollywooDDoS: Detecting Volumetric Attacks in Moving Images of Network Traffic\",\"authors\":\"Samuel Kopmann, Hauke Heseding, M. Zitterbart\",\"doi\":\"10.1109/LCN53696.2022.9843465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast detection of Distributed Denial of Service attacks is key for establishing appropriate countermeasures in order to protect potential targets. HollywooDDoS applies well-known techniques from movie classification to the challenge of DDoS detection. The proposed approach utilizes a traffic aggregation scheme representing traffic volumes between IP subnets as two-dimensional images, while preserving detection relevant traffic characteristics. These images serve as input for a convolutional neural network, learning IP address space distributions of both background and attack traffic intensities. It is shown that a real-world DDoS attack can be precisely detected on the time scale of milliseconds. We evaluate classification of images without temporal information about attack traffic development to outline the impact of image resolution and aggregation time frames. We then show that attack detection further improves by 17% when utilizing a consecutive series of images capturing traffic dynamics.\",\"PeriodicalId\":303965,\"journal\":{\"name\":\"2022 IEEE 47th Conference on Local Computer Networks (LCN)\",\"volume\":\"31 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 47th Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN53696.2022.9843465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN53696.2022.9843465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

快速检测分布式拒绝服务攻击是建立适当对策以保护潜在目标的关键。HollywooDDoS应用著名的技术从电影分类到DDoS检测的挑战。该方法利用流量聚合方案将IP子网之间的流量表示为二维图像,同时保留检测相关的流量特征。这些图像作为卷积神经网络的输入,学习背景和攻击流量强度的IP地址空间分布。研究表明,可以在毫秒级的时间尺度上精确检测到真实世界的DDoS攻击。我们评估了没有关于攻击流量发展的时间信息的图像分类,以概述图像分辨率和聚合时间框架的影响。然后,我们表明,当利用连续的一系列图像捕获流量动态时,攻击检测进一步提高了17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HollywooDDoS: Detecting Volumetric Attacks in Moving Images of Network Traffic
Fast detection of Distributed Denial of Service attacks is key for establishing appropriate countermeasures in order to protect potential targets. HollywooDDoS applies well-known techniques from movie classification to the challenge of DDoS detection. The proposed approach utilizes a traffic aggregation scheme representing traffic volumes between IP subnets as two-dimensional images, while preserving detection relevant traffic characteristics. These images serve as input for a convolutional neural network, learning IP address space distributions of both background and attack traffic intensities. It is shown that a real-world DDoS attack can be precisely detected on the time scale of milliseconds. We evaluate classification of images without temporal information about attack traffic development to outline the impact of image resolution and aggregation time frames. We then show that attack detection further improves by 17% when utilizing a consecutive series of images capturing traffic dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信