Banach空间上的算子Lipschitz估计函数

Simon Joseph, Arafa Dawood, Nagat Suoliman, Fatin Saeed, M. Mustafa
{"title":"Banach空间上的算子Lipschitz估计函数","authors":"Simon Joseph, Arafa Dawood, Nagat Suoliman, Fatin Saeed, M. Mustafa","doi":"10.28919/jsta/4116","DOIUrl":null,"url":null,"abstract":"In this paper, let X, Y be Banach spaces and let ℒ(X, Y) be the space of bounded linear sequence of operators from X to Y. We develop the theory of double sequence of operators integrals on ℒ(X, Y) and apply this theory to obtain commutator series estimates, for a large class of functions 𝑓𝑗 , where 𝐴𝑗 ∈ ℒ(𝑋), B𝑗 ∈ ℒ(𝑌) are scalar type the sequence of operators and 𝑆 ∈ ℒ(𝑋, 𝑌). In particular, we establish this estimate for 𝑓𝑗 (1 + 𝜖): = |1 + 𝜖| and for diagonalizable estimates derive hold for diagonalizable matrices with a constant independent of the size of the sequence of operators on 𝑋 = l(1+𝜖) and 𝑌 = l(1+𝜖) , for 𝜖 = 0, and X = Y = c0. Also, we obtain results for 𝜖 ≥ 0, studied the estimate above [1] in the setting of Banach ideals in ℒ(𝑋, 𝑌).","PeriodicalId":138064,"journal":{"name":"Journal of Semigroup Theory and Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Operator Lipschitz estimate functions on Banach spaces\",\"authors\":\"Simon Joseph, Arafa Dawood, Nagat Suoliman, Fatin Saeed, M. Mustafa\",\"doi\":\"10.28919/jsta/4116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, let X, Y be Banach spaces and let ℒ(X, Y) be the space of bounded linear sequence of operators from X to Y. We develop the theory of double sequence of operators integrals on ℒ(X, Y) and apply this theory to obtain commutator series estimates, for a large class of functions 𝑓𝑗 , where 𝐴𝑗 ∈ ℒ(𝑋), B𝑗 ∈ ℒ(𝑌) are scalar type the sequence of operators and 𝑆 ∈ ℒ(𝑋, 𝑌). In particular, we establish this estimate for 𝑓𝑗 (1 + 𝜖): = |1 + 𝜖| and for diagonalizable estimates derive hold for diagonalizable matrices with a constant independent of the size of the sequence of operators on 𝑋 = l(1+𝜖) and 𝑌 = l(1+𝜖) , for 𝜖 = 0, and X = Y = c0. Also, we obtain results for 𝜖 ≥ 0, studied the estimate above [1] in the setting of Banach ideals in ℒ(𝑋, 𝑌).\",\"PeriodicalId\":138064,\"journal\":{\"name\":\"Journal of Semigroup Theory and Applications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Semigroup Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28919/jsta/4116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Semigroup Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/jsta/4116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将X, Y设为巴拿赫空间,设∑(X, Y)为X到Y的有界算子线性序列空间,针对一类大函数𝑓𝑗,建立了算子积分的二重序列理论,并应用该理论得到了对易子级数的估计,其中,∈𝑗∈𝑋(𝑋),B𝑗∈ ̄(𝑌)是标量型算子序列,𝑆∈ ̄(𝑋,𝑌)。特别地,我们建立了对𝑓𝑗(1+ : 1+ : = |1 + 的估计,对于可对角化的估计,在𝑋= l(1+ )和𝑌= l(1+ )上,对于它们的算子序列的大小无关的常数,我们推导了对可对角化矩阵的估计,对于它们的算子序列的大小,我们推导了对它们的估计。我们也得到了对于≥0的结果,研究了以上在f(𝑋,𝑌)中Banach理想的估计[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operator Lipschitz estimate functions on Banach spaces
In this paper, let X, Y be Banach spaces and let ℒ(X, Y) be the space of bounded linear sequence of operators from X to Y. We develop the theory of double sequence of operators integrals on ℒ(X, Y) and apply this theory to obtain commutator series estimates, for a large class of functions 𝑓𝑗 , where 𝐴𝑗 ∈ ℒ(𝑋), B𝑗 ∈ ℒ(𝑌) are scalar type the sequence of operators and 𝑆 ∈ ℒ(𝑋, 𝑌). In particular, we establish this estimate for 𝑓𝑗 (1 + 𝜖): = |1 + 𝜖| and for diagonalizable estimates derive hold for diagonalizable matrices with a constant independent of the size of the sequence of operators on 𝑋 = l(1+𝜖) and 𝑌 = l(1+𝜖) , for 𝜖 = 0, and X = Y = c0. Also, we obtain results for 𝜖 ≥ 0, studied the estimate above [1] in the setting of Banach ideals in ℒ(𝑋, 𝑌).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信