乳腺癌生存纵向队列研究中缺失数据输入的评价

A. S. Fernandes, J. M. Fonseca, I. Jarman, T. Etchells, P. Lisboa, E. Biganzoli, C. Bajdik
{"title":"乳腺癌生存纵向队列研究中缺失数据输入的评价","authors":"A. S. Fernandes, J. M. Fonseca, I. Jarman, T. Etchells, P. Lisboa, E. Biganzoli, C. Bajdik","doi":"10.1504/IJKESDP.2009.028818","DOIUrl":null,"url":null,"abstract":"Missing values are common in medical datasets and may be amenable to data imputation when modelling a given data set or validating on an external cohort. This paper discusses model averaging over samples of the imputed distribution and extends this approach to generic non-linear modelling with the partial logistic artificial neural network (PLANN) regularised with automatic relevance determination (ARD). The study then applies the imputation to external validation, considering also predictions made for individual patients. A prognostic index is defined for the non-linear model and validation results show that four statistically significant risk groups identified at 95% level of confidence from the modelling data, from Christie Hospital (n = 931), retain good separation during external validation with data from the BC Cancer Agency (BCCA) (n = 4,083). A satisfactory discrimination and calibration performance was assessed with the time dependent C index (C td) and Hosmer-Lemeshow statistic, respectively, for both, training and validated model.","PeriodicalId":347123,"journal":{"name":"Int. J. Knowl. Eng. Soft Data Paradigms","volume":"53 3-4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of missing data imputation in longitudinal cohort studies in breast cancer survival\",\"authors\":\"A. S. Fernandes, J. M. Fonseca, I. Jarman, T. Etchells, P. Lisboa, E. Biganzoli, C. Bajdik\",\"doi\":\"10.1504/IJKESDP.2009.028818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Missing values are common in medical datasets and may be amenable to data imputation when modelling a given data set or validating on an external cohort. This paper discusses model averaging over samples of the imputed distribution and extends this approach to generic non-linear modelling with the partial logistic artificial neural network (PLANN) regularised with automatic relevance determination (ARD). The study then applies the imputation to external validation, considering also predictions made for individual patients. A prognostic index is defined for the non-linear model and validation results show that four statistically significant risk groups identified at 95% level of confidence from the modelling data, from Christie Hospital (n = 931), retain good separation during external validation with data from the BC Cancer Agency (BCCA) (n = 4,083). A satisfactory discrimination and calibration performance was assessed with the time dependent C index (C td) and Hosmer-Lemeshow statistic, respectively, for both, training and validated model.\",\"PeriodicalId\":347123,\"journal\":{\"name\":\"Int. J. Knowl. Eng. Soft Data Paradigms\",\"volume\":\"53 3-4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Eng. Soft Data Paradigms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJKESDP.2009.028818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Soft Data Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKESDP.2009.028818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

缺失值在医疗数据集中很常见,在对给定数据集建模或对外部队列进行验证时,可能需要进行数据输入。本文讨论了对输入分布的样本进行模型平均,并将该方法扩展到具有自动相关性确定(ARD)的部分逻辑人工神经网络(PLANN)的一般非线性建模。然后,该研究将其应用于外部验证,同时考虑到对个体患者的预测。为非线性模型定义了预后指数,验证结果显示,从克里斯蒂医院(n = 931)的建模数据中确定的四个具有统计学意义的风险组在95%的置信水平下,在使用BC省癌症机构(BCCA) (n = 4083)的数据进行外部验证时保持了良好的分离。通过时间相关C指数(C td)和Hosmer-Lemeshow统计量分别对训练模型和验证模型进行了令人满意的判别和校准性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of missing data imputation in longitudinal cohort studies in breast cancer survival
Missing values are common in medical datasets and may be amenable to data imputation when modelling a given data set or validating on an external cohort. This paper discusses model averaging over samples of the imputed distribution and extends this approach to generic non-linear modelling with the partial logistic artificial neural network (PLANN) regularised with automatic relevance determination (ARD). The study then applies the imputation to external validation, considering also predictions made for individual patients. A prognostic index is defined for the non-linear model and validation results show that four statistically significant risk groups identified at 95% level of confidence from the modelling data, from Christie Hospital (n = 931), retain good separation during external validation with data from the BC Cancer Agency (BCCA) (n = 4,083). A satisfactory discrimination and calibration performance was assessed with the time dependent C index (C td) and Hosmer-Lemeshow statistic, respectively, for both, training and validated model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信