基于方面的情感分析BERT-IAN模型

Huibing Zhang, Fang Pan, Junchao Dong, Ya Zhou
{"title":"基于方面的情感分析BERT-IAN模型","authors":"Huibing Zhang, Fang Pan, Junchao Dong, Ya Zhou","doi":"10.1109/CISCE50729.2020.00056","DOIUrl":null,"url":null,"abstract":"Aspect-based sentiment analysis is different from document-level and sentence-level sentiment analysis, which aims to predict the sentiment polarity of a certain aspect in a sentence. The accuracy of the existing aspect-based sentiment analysis model still needs to be improved. A BERT-IAN sentiment analysis model that improves the Interactive Attention Networks (IAN) model is proposed to further improve the accuracy of the aspect-based sentiment analysis. First use the BERT pre-training model to encode aspects and context respectively. Then use a transformer encoder with interactive attention to interactively learn the attention of the aspect and context, and generate a final representation. Finally, through the sentiment classification layer, the aspect corresponding sentiment are analyzed. The experimental results on Restaurant and Laptop datasets show the effectiveness and superiority of the BERT-IAN model.","PeriodicalId":101777,"journal":{"name":"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"BERT-IAN Model for Aspect-based Sentiment Analysis\",\"authors\":\"Huibing Zhang, Fang Pan, Junchao Dong, Ya Zhou\",\"doi\":\"10.1109/CISCE50729.2020.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aspect-based sentiment analysis is different from document-level and sentence-level sentiment analysis, which aims to predict the sentiment polarity of a certain aspect in a sentence. The accuracy of the existing aspect-based sentiment analysis model still needs to be improved. A BERT-IAN sentiment analysis model that improves the Interactive Attention Networks (IAN) model is proposed to further improve the accuracy of the aspect-based sentiment analysis. First use the BERT pre-training model to encode aspects and context respectively. Then use a transformer encoder with interactive attention to interactively learn the attention of the aspect and context, and generate a final representation. Finally, through the sentiment classification layer, the aspect corresponding sentiment are analyzed. The experimental results on Restaurant and Laptop datasets show the effectiveness and superiority of the BERT-IAN model.\",\"PeriodicalId\":101777,\"journal\":{\"name\":\"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISCE50729.2020.00056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISCE50729.2020.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于方面的情感分析不同于文档级和句子级的情感分析,其目的是预测句子中某方面的情感极性。现有的基于方面的情感分析模型的准确性还有待提高。为了进一步提高基于方面的情感分析的准确性,提出了一种改进交互式注意网络(IAN)模型的BERT-IAN情感分析模型。首先使用BERT预训练模型分别对方面和上下文进行编码。然后使用具有交互注意的转换器编码器交互式地学习方面和上下文的注意,并生成最终表示。最后,通过情感分类层,对方面对应的情感进行分析。在餐厅和笔记本电脑数据集上的实验结果表明了BERT-IAN模型的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BERT-IAN Model for Aspect-based Sentiment Analysis
Aspect-based sentiment analysis is different from document-level and sentence-level sentiment analysis, which aims to predict the sentiment polarity of a certain aspect in a sentence. The accuracy of the existing aspect-based sentiment analysis model still needs to be improved. A BERT-IAN sentiment analysis model that improves the Interactive Attention Networks (IAN) model is proposed to further improve the accuracy of the aspect-based sentiment analysis. First use the BERT pre-training model to encode aspects and context respectively. Then use a transformer encoder with interactive attention to interactively learn the attention of the aspect and context, and generate a final representation. Finally, through the sentiment classification layer, the aspect corresponding sentiment are analyzed. The experimental results on Restaurant and Laptop datasets show the effectiveness and superiority of the BERT-IAN model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信