基于数据减量的高维数据模糊投影聚类

S. Mehdi Seyednejad, hamidreza musavi, S. Mohaddese Seyednejad, Tooraj Darabi
{"title":"基于数据减量的高维数据模糊投影聚类","authors":"S. Mehdi Seyednejad, hamidreza musavi, S. Mohaddese Seyednejad, Tooraj Darabi","doi":"10.1109/DMO.2011.5976521","DOIUrl":null,"url":null,"abstract":"Today, data clustering problems became an important challenge in Data Mining domain. A kind of clustering is projective clustering. Since a lot of researches has done in this article but each of previous algorithms had some defects that we will be indicate in this paper. We propose a new algorithm based on fuzzy sets and at first using this approach detect and eliminate unimportant properties for all clusters. Then we remove outliers, finally we use weighted fuzzy c-mean algorithm according to offered formula for fuzzy calculations. Experimental results show that our approach has more performance and accuracy than similar algorithms.","PeriodicalId":436393,"journal":{"name":"2011 3rd Conference on Data Mining and Optimization (DMO)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy projective clustering in high dimension data using decrement size of data\",\"authors\":\"S. Mehdi Seyednejad, hamidreza musavi, S. Mohaddese Seyednejad, Tooraj Darabi\",\"doi\":\"10.1109/DMO.2011.5976521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, data clustering problems became an important challenge in Data Mining domain. A kind of clustering is projective clustering. Since a lot of researches has done in this article but each of previous algorithms had some defects that we will be indicate in this paper. We propose a new algorithm based on fuzzy sets and at first using this approach detect and eliminate unimportant properties for all clusters. Then we remove outliers, finally we use weighted fuzzy c-mean algorithm according to offered formula for fuzzy calculations. Experimental results show that our approach has more performance and accuracy than similar algorithms.\",\"PeriodicalId\":436393,\"journal\":{\"name\":\"2011 3rd Conference on Data Mining and Optimization (DMO)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd Conference on Data Mining and Optimization (DMO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMO.2011.5976521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd Conference on Data Mining and Optimization (DMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMO.2011.5976521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,数据聚类问题已成为数据挖掘领域的一个重要挑战。聚类的一种是投影聚类。由于本文做了大量的研究,但之前的算法都有一些缺陷,我们将在本文中指出。我们提出了一种基于模糊集的新算法,并首先使用该方法检测和消除所有聚类的不重要属性。然后去除异常值,最后根据给出的模糊计算公式使用加权模糊c均值算法。实验结果表明,与同类算法相比,该方法具有更高的性能和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy projective clustering in high dimension data using decrement size of data
Today, data clustering problems became an important challenge in Data Mining domain. A kind of clustering is projective clustering. Since a lot of researches has done in this article but each of previous algorithms had some defects that we will be indicate in this paper. We propose a new algorithm based on fuzzy sets and at first using this approach detect and eliminate unimportant properties for all clusters. Then we remove outliers, finally we use weighted fuzzy c-mean algorithm according to offered formula for fuzzy calculations. Experimental results show that our approach has more performance and accuracy than similar algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信