基于改进DQN算法的云数据中心智能动作负载均衡决策

Arabinda Pradhan, S. Bisoy
{"title":"基于改进DQN算法的云数据中心智能动作负载均衡决策","authors":"Arabinda Pradhan, S. Bisoy","doi":"10.1109/ESCI53509.2022.9758369","DOIUrl":null,"url":null,"abstract":"Due to dynamic changes of cloud state and increases user demand, load of datacenter fluctuated at regularly that shows load balancing problem. It is a challenging issue to take an appropriate action by datacenter controller to reduce the processing time of all incoming task with allocating the best resources in minimum time period. Therefore, an effective task scheduling is required to balance the load in datacenter. This paper proposed an Improved Deep Q-Network (I-DQN) task scheduling algorithm to balance the load. In this algorithm agent take a suitable action that minimize the makespan time. Simulation is done by using Google Colab with Tensorflow show the effectiveness of proposed scheduling algorithm. From the experiment we show our proposed algorithm is better success rate with reduce makespan time, waiting time and throughput as compare to existing DQN algorithm.","PeriodicalId":436539,"journal":{"name":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","volume":"25 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Action Performed Load Balancing Decision Made in Cloud Datacenter Based on Improved DQN Algorithm\",\"authors\":\"Arabinda Pradhan, S. Bisoy\",\"doi\":\"10.1109/ESCI53509.2022.9758369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to dynamic changes of cloud state and increases user demand, load of datacenter fluctuated at regularly that shows load balancing problem. It is a challenging issue to take an appropriate action by datacenter controller to reduce the processing time of all incoming task with allocating the best resources in minimum time period. Therefore, an effective task scheduling is required to balance the load in datacenter. This paper proposed an Improved Deep Q-Network (I-DQN) task scheduling algorithm to balance the load. In this algorithm agent take a suitable action that minimize the makespan time. Simulation is done by using Google Colab with Tensorflow show the effectiveness of proposed scheduling algorithm. From the experiment we show our proposed algorithm is better success rate with reduce makespan time, waiting time and throughput as compare to existing DQN algorithm.\",\"PeriodicalId\":436539,\"journal\":{\"name\":\"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)\",\"volume\":\"25 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESCI53509.2022.9758369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCI53509.2022.9758369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于云状态的动态变化和用户需求的增加,数据中心的负载有规律地波动,出现负载均衡问题。如何通过数据中心控制器采取适当的措施,在最短的时间内分配最佳的资源,从而减少所有传入任务的处理时间,是一个具有挑战性的问题。因此,需要有效的任务调度来平衡数据中心的负载。本文提出了一种改进的深度Q-Network (I-DQN)任务调度算法来实现负载均衡。在该算法中,代理采取适当的行动,使最大完成时间最小化。利用谷歌Colab和Tensorflow进行了仿真,验证了所提调度算法的有效性。实验结果表明,与现有的DQN算法相比,本文提出的算法具有更高的成功率,并减少了makespan时间、等待时间和吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Action Performed Load Balancing Decision Made in Cloud Datacenter Based on Improved DQN Algorithm
Due to dynamic changes of cloud state and increases user demand, load of datacenter fluctuated at regularly that shows load balancing problem. It is a challenging issue to take an appropriate action by datacenter controller to reduce the processing time of all incoming task with allocating the best resources in minimum time period. Therefore, an effective task scheduling is required to balance the load in datacenter. This paper proposed an Improved Deep Q-Network (I-DQN) task scheduling algorithm to balance the load. In this algorithm agent take a suitable action that minimize the makespan time. Simulation is done by using Google Colab with Tensorflow show the effectiveness of proposed scheduling algorithm. From the experiment we show our proposed algorithm is better success rate with reduce makespan time, waiting time and throughput as compare to existing DQN algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信