基于脉冲神经网络的主动视觉机器人规划框架

Katerina Maria Oikonomou, Ioannis Kansizoglou, A. Gasteratos
{"title":"基于脉冲神经网络的主动视觉机器人规划框架","authors":"Katerina Maria Oikonomou, Ioannis Kansizoglou, A. Gasteratos","doi":"10.1109/MED54222.2022.9837132","DOIUrl":null,"url":null,"abstract":"Robust and energy-efficient robot planning is of utmost importance for mobile robots since the dynamic changes of the environment entail robotic agents with high adaptation capacities, so as to excel in their tasks. In this work, we introduce a hybrid spiking and deep neural network architecture for actor-critic control of a 6-DOF robot arm. Our method firstly involves autonomous object detection via active vision exploration and thereafter, the entire hybrid architecture is described. In specific, the actor utilises an integrated-and-fire model for action generation, while the critic a deep neural one for action evaluation. Lastly, the benefits of this approach in terms of energy efficiency are extensively discussed.","PeriodicalId":354557,"journal":{"name":"2022 30th Mediterranean Conference on Control and Automation (MED)","volume":"375 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Framework for Active Vision-Based Robot Planning using Spiking Neural Networks\",\"authors\":\"Katerina Maria Oikonomou, Ioannis Kansizoglou, A. Gasteratos\",\"doi\":\"10.1109/MED54222.2022.9837132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust and energy-efficient robot planning is of utmost importance for mobile robots since the dynamic changes of the environment entail robotic agents with high adaptation capacities, so as to excel in their tasks. In this work, we introduce a hybrid spiking and deep neural network architecture for actor-critic control of a 6-DOF robot arm. Our method firstly involves autonomous object detection via active vision exploration and thereafter, the entire hybrid architecture is described. In specific, the actor utilises an integrated-and-fire model for action generation, while the critic a deep neural one for action evaluation. Lastly, the benefits of this approach in terms of energy efficiency are extensively discussed.\",\"PeriodicalId\":354557,\"journal\":{\"name\":\"2022 30th Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"375 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED54222.2022.9837132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED54222.2022.9837132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于移动机器人来说,鲁棒和节能的机器人规划是至关重要的,因为环境的动态变化需要机器人代理具有高适应能力,才能在任务中脱颖而出。在这项工作中,我们引入了一种混合脉冲和深度神经网络架构,用于六自由度机器人手臂的演员评论控制。我们的方法首先涉及到通过主动视觉探索的自主目标检测,然后描述了整个混合架构。具体来说,演员使用一个集火模型来生成动作,而评论家使用一个深度神经模型来评估动作。最后,广泛讨论了这种方法在能源效率方面的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Framework for Active Vision-Based Robot Planning using Spiking Neural Networks
Robust and energy-efficient robot planning is of utmost importance for mobile robots since the dynamic changes of the environment entail robotic agents with high adaptation capacities, so as to excel in their tasks. In this work, we introduce a hybrid spiking and deep neural network architecture for actor-critic control of a 6-DOF robot arm. Our method firstly involves autonomous object detection via active vision exploration and thereafter, the entire hybrid architecture is described. In specific, the actor utilises an integrated-and-fire model for action generation, while the critic a deep neural one for action evaluation. Lastly, the benefits of this approach in terms of energy efficiency are extensively discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信