用变压器预测股票价格时间序列

L. D. Costa, A. Machado
{"title":"用变压器预测股票价格时间序列","authors":"L. D. Costa, A. Machado","doi":"10.5753/bwaif.2023.230239","DOIUrl":null,"url":null,"abstract":"This work presents an implementation of the Transformer on the problem of predicting stock prices from time series. The model is compared with ARIMA and a neural network with LSTM cells. We hypothesize that, due to the powerful memory capacity and association between series values, the Transformer would be able to achieve better results than other shallow or deep solutions. The data used in the experiments is the average daily prices of 8 shares of the Ibovespa index in the period of 2008. The obtained results corroborated the hypothesis of superiority of the Transformer which predicted the stock prices with higher accuracy in 60% of the times.","PeriodicalId":101527,"journal":{"name":"Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Stock Price Time Series using Transformers\",\"authors\":\"L. D. Costa, A. Machado\",\"doi\":\"10.5753/bwaif.2023.230239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an implementation of the Transformer on the problem of predicting stock prices from time series. The model is compared with ARIMA and a neural network with LSTM cells. We hypothesize that, due to the powerful memory capacity and association between series values, the Transformer would be able to achieve better results than other shallow or deep solutions. The data used in the experiments is the average daily prices of 8 shares of the Ibovespa index in the period of 2008. The obtained results corroborated the hypothesis of superiority of the Transformer which predicted the stock prices with higher accuracy in 60% of the times.\",\"PeriodicalId\":101527,\"journal\":{\"name\":\"Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/bwaif.2023.230239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/bwaif.2023.230239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了Transformer在时间序列预测股票价格问题上的一个实现。将该模型与ARIMA和LSTM细胞神经网络进行了比较。我们假设,由于强大的内存容量和串联值之间的关联,Transformer将能够获得比其他浅层或深层解决方案更好的结果。实验中使用的数据是Ibovespa指数8只股票在2008年期间的日均价格。所得结果证实了变压器预测股票价格的优越假设,其预测准确率在60%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Stock Price Time Series using Transformers
This work presents an implementation of the Transformer on the problem of predicting stock prices from time series. The model is compared with ARIMA and a neural network with LSTM cells. We hypothesize that, due to the powerful memory capacity and association between series values, the Transformer would be able to achieve better results than other shallow or deep solutions. The data used in the experiments is the average daily prices of 8 shares of the Ibovespa index in the period of 2008. The obtained results corroborated the hypothesis of superiority of the Transformer which predicted the stock prices with higher accuracy in 60% of the times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信