{"title":"隐藏单元大小和自回归特征对心理任务分类的影响","authors":"R. Palaniappan, Nai-Jen Huan","doi":"10.5281/ZENODO.1076016","DOIUrl":null,"url":null,"abstract":"Classification of electroencephalogram (EEG) signals extracted during mental tasks is a technique that is actively pursued for Brain Computer Interfaces (BCI) designs. In this paper, we compared the classification performances of univariate- autoregressive (AR) and multivariate autoregressive (MAR) models for representing EEG signals that were extracted during different mental tasks. Multilayer Perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm was used to classify these features into the different categories representing the mental tasks. Classification performances were also compared across different mental task combinations and 2 sets of hidden units (HU): 2 to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks were studied for each subject. Three different feature extraction methods with 6 th order were used to extract features from these EEG signals: AR coefficients computed with Burg's algorithm (ARBG), AR coefficients computed with stepwise least square algorithm (ARLS) and MAR coefficients computed with stepwise least square algorithm. The best results were obtained with 20 to 100 HU using ARBG. It is concluded that i) it is important to choose the suitable mental tasks for different individuals for a successful BCI design, ii) higher HU are more suitable and iii) ARBG is the most suitable feature extraction method.","PeriodicalId":430903,"journal":{"name":"International Enformatika Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Effects of Hidden Unit Sizes and Autoregressive Features in Mental Task Classification\",\"authors\":\"R. Palaniappan, Nai-Jen Huan\",\"doi\":\"10.5281/ZENODO.1076016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of electroencephalogram (EEG) signals extracted during mental tasks is a technique that is actively pursued for Brain Computer Interfaces (BCI) designs. In this paper, we compared the classification performances of univariate- autoregressive (AR) and multivariate autoregressive (MAR) models for representing EEG signals that were extracted during different mental tasks. Multilayer Perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm was used to classify these features into the different categories representing the mental tasks. Classification performances were also compared across different mental task combinations and 2 sets of hidden units (HU): 2 to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks were studied for each subject. Three different feature extraction methods with 6 th order were used to extract features from these EEG signals: AR coefficients computed with Burg's algorithm (ARBG), AR coefficients computed with stepwise least square algorithm (ARLS) and MAR coefficients computed with stepwise least square algorithm. The best results were obtained with 20 to 100 HU using ARBG. It is concluded that i) it is important to choose the suitable mental tasks for different individuals for a successful BCI design, ii) higher HU are more suitable and iii) ARBG is the most suitable feature extraction method.\",\"PeriodicalId\":430903,\"journal\":{\"name\":\"International Enformatika Conference\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Enformatika Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.1076016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Enformatika Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.1076016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Hidden Unit Sizes and Autoregressive Features in Mental Task Classification
Classification of electroencephalogram (EEG) signals extracted during mental tasks is a technique that is actively pursued for Brain Computer Interfaces (BCI) designs. In this paper, we compared the classification performances of univariate- autoregressive (AR) and multivariate autoregressive (MAR) models for representing EEG signals that were extracted during different mental tasks. Multilayer Perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm was used to classify these features into the different categories representing the mental tasks. Classification performances were also compared across different mental task combinations and 2 sets of hidden units (HU): 2 to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks were studied for each subject. Three different feature extraction methods with 6 th order were used to extract features from these EEG signals: AR coefficients computed with Burg's algorithm (ARBG), AR coefficients computed with stepwise least square algorithm (ARLS) and MAR coefficients computed with stepwise least square algorithm. The best results were obtained with 20 to 100 HU using ARBG. It is concluded that i) it is important to choose the suitable mental tasks for different individuals for a successful BCI design, ii) higher HU are more suitable and iii) ARBG is the most suitable feature extraction method.