具有输入延迟和Lipschitz非线性扰动的一阶线性系统自适应鲁棒跟踪控制

H. Lai, Yang Zhu, Zheng Chen, B. Yao
{"title":"具有输入延迟和Lipschitz非线性扰动的一阶线性系统自适应鲁棒跟踪控制","authors":"H. Lai, Yang Zhu, Zheng Chen, B. Yao","doi":"10.23919/ACC55779.2023.10155836","DOIUrl":null,"url":null,"abstract":"In this paper, an adaptive robust tracking controller is proposed for first-order linear systems with input delay, unknown plant parameters and Lipschitz nonlinear disturbance. The controller employs the predictor feedback to compensate for the effect of input delay, the robust feedback to deal with uncertainties, the model compensation for trajectory tracking, and projection-type adaptation laws are designed. By the stability analysis with a Lyapunov function in integral form, the closed-loop system is locally stable in the sense that the tracking error is bounded above by a known function which exponentially converges to a specified accuracy provided that the initial states and control parameters meet certain conditions. Furthermore, when the disturbance is reduced to a constant, the controller guarantees the semi-global stability that the tracking error asymptotically converges to zero. Simulation results demonstrate the effectiveness of the proposed controller.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Robust Tracking Control for First-Order Linear Systems with Input Delay and Lipschitz Nonlinear Disturbance\",\"authors\":\"H. Lai, Yang Zhu, Zheng Chen, B. Yao\",\"doi\":\"10.23919/ACC55779.2023.10155836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an adaptive robust tracking controller is proposed for first-order linear systems with input delay, unknown plant parameters and Lipschitz nonlinear disturbance. The controller employs the predictor feedback to compensate for the effect of input delay, the robust feedback to deal with uncertainties, the model compensation for trajectory tracking, and projection-type adaptation laws are designed. By the stability analysis with a Lyapunov function in integral form, the closed-loop system is locally stable in the sense that the tracking error is bounded above by a known function which exponentially converges to a specified accuracy provided that the initial states and control parameters meet certain conditions. Furthermore, when the disturbance is reduced to a constant, the controller guarantees the semi-global stability that the tracking error asymptotically converges to zero. Simulation results demonstrate the effectiveness of the proposed controller.\",\"PeriodicalId\":397401,\"journal\":{\"name\":\"2023 American Control Conference (ACC)\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC55779.2023.10155836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10155836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对具有输入延迟、未知对象参数和Lipschitz非线性扰动的一阶线性系统,提出了一种自适应鲁棒跟踪控制器。该控制器采用预测反馈补偿输入延迟的影响,鲁棒反馈处理不确定性,模型补偿轨迹跟踪,并设计了投影型自适应律。通过用积分形式的李雅普诺夫函数进行稳定性分析,在给定初始状态和控制参数满足一定条件的情况下,系统的跟踪误差在已知函数的限定下呈指数收敛到指定精度的意义上是局部稳定的。此外,当扰动降为一个常数时,控制器保证了跟踪误差渐近收敛于零的半全局稳定性。仿真结果验证了该控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Robust Tracking Control for First-Order Linear Systems with Input Delay and Lipschitz Nonlinear Disturbance
In this paper, an adaptive robust tracking controller is proposed for first-order linear systems with input delay, unknown plant parameters and Lipschitz nonlinear disturbance. The controller employs the predictor feedback to compensate for the effect of input delay, the robust feedback to deal with uncertainties, the model compensation for trajectory tracking, and projection-type adaptation laws are designed. By the stability analysis with a Lyapunov function in integral form, the closed-loop system is locally stable in the sense that the tracking error is bounded above by a known function which exponentially converges to a specified accuracy provided that the initial states and control parameters meet certain conditions. Furthermore, when the disturbance is reduced to a constant, the controller guarantees the semi-global stability that the tracking error asymptotically converges to zero. Simulation results demonstrate the effectiveness of the proposed controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信