{"title":"关系学习中随机优化算法的语法概念表示","authors":"P. Buryan, Jiří Kubalík, Katsumi Inoue","doi":"10.1109/ISDA.2009.156","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel grammar-based framework of concept representation for randomized search in Relational Learning (RL), namely for Inductive Logic Programming. The utilization of grammars guarantees that the search operations produce syntactically correct concepts and that the background knowledge encoded in the grammar can be used both for directing the search and for restricting the space of possible concepts to relevant candidate concepts (semantically valid concepts). Not only that it enables handling and incorporating the domain knowledge in a declarative fashion, but grammars also make the new approach transparent, flexible, less problem-specific and allow it to be easily used by almost any randomized algorithm within RL. Initial test results suggest that the grammar-based algorithm has strong potential for RL tasks.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grammatical Concept Representation for Randomised Optimisation Algorithms in Relational Learning\",\"authors\":\"P. Buryan, Jiří Kubalík, Katsumi Inoue\",\"doi\":\"10.1109/ISDA.2009.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel grammar-based framework of concept representation for randomized search in Relational Learning (RL), namely for Inductive Logic Programming. The utilization of grammars guarantees that the search operations produce syntactically correct concepts and that the background knowledge encoded in the grammar can be used both for directing the search and for restricting the space of possible concepts to relevant candidate concepts (semantically valid concepts). Not only that it enables handling and incorporating the domain knowledge in a declarative fashion, but grammars also make the new approach transparent, flexible, less problem-specific and allow it to be easily used by almost any randomized algorithm within RL. Initial test results suggest that the grammar-based algorithm has strong potential for RL tasks.\",\"PeriodicalId\":330324,\"journal\":{\"name\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"218 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2009.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Grammatical Concept Representation for Randomised Optimisation Algorithms in Relational Learning
This paper proposes a novel grammar-based framework of concept representation for randomized search in Relational Learning (RL), namely for Inductive Logic Programming. The utilization of grammars guarantees that the search operations produce syntactically correct concepts and that the background knowledge encoded in the grammar can be used both for directing the search and for restricting the space of possible concepts to relevant candidate concepts (semantically valid concepts). Not only that it enables handling and incorporating the domain knowledge in a declarative fashion, but grammars also make the new approach transparent, flexible, less problem-specific and allow it to be easily used by almost any randomized algorithm within RL. Initial test results suggest that the grammar-based algorithm has strong potential for RL tasks.