关系学习中随机优化算法的语法概念表示

P. Buryan, Jiří Kubalík, Katsumi Inoue
{"title":"关系学习中随机优化算法的语法概念表示","authors":"P. Buryan, Jiří Kubalík, Katsumi Inoue","doi":"10.1109/ISDA.2009.156","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel grammar-based framework of concept representation for randomized search in Relational Learning (RL), namely for Inductive Logic Programming. The utilization of grammars guarantees that the search operations produce syntactically correct concepts and that the background knowledge encoded in the grammar can be used both for directing the search and for restricting the space of possible concepts to relevant candidate concepts (semantically valid concepts). Not only that it enables handling and incorporating the domain knowledge in a declarative fashion, but grammars also make the new approach transparent, flexible, less problem-specific and allow it to be easily used by almost any randomized algorithm within RL. Initial test results suggest that the grammar-based algorithm has strong potential for RL tasks.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grammatical Concept Representation for Randomised Optimisation Algorithms in Relational Learning\",\"authors\":\"P. Buryan, Jiří Kubalík, Katsumi Inoue\",\"doi\":\"10.1109/ISDA.2009.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel grammar-based framework of concept representation for randomized search in Relational Learning (RL), namely for Inductive Logic Programming. The utilization of grammars guarantees that the search operations produce syntactically correct concepts and that the background knowledge encoded in the grammar can be used both for directing the search and for restricting the space of possible concepts to relevant candidate concepts (semantically valid concepts). Not only that it enables handling and incorporating the domain knowledge in a declarative fashion, but grammars also make the new approach transparent, flexible, less problem-specific and allow it to be easily used by almost any randomized algorithm within RL. Initial test results suggest that the grammar-based algorithm has strong potential for RL tasks.\",\"PeriodicalId\":330324,\"journal\":{\"name\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"218 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2009.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的基于语法的概念表示框架,用于关系学习(RL)中的随机搜索,即归纳逻辑规划。语法的使用保证了搜索操作产生语法正确的概念,并且语法中编码的背景知识既可以用于指导搜索,也可以用于将可能概念的空间限制为相关的候选概念(语义上有效的概念)。它不仅支持以声明的方式处理和合并领域知识,而且语法也使新方法透明、灵活、不那么特定于问题,并且允许它被RL中的几乎任何随机算法轻松使用。初步测试结果表明,基于语法的算法在强化学习任务中具有很强的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grammatical Concept Representation for Randomised Optimisation Algorithms in Relational Learning
This paper proposes a novel grammar-based framework of concept representation for randomized search in Relational Learning (RL), namely for Inductive Logic Programming. The utilization of grammars guarantees that the search operations produce syntactically correct concepts and that the background knowledge encoded in the grammar can be used both for directing the search and for restricting the space of possible concepts to relevant candidate concepts (semantically valid concepts). Not only that it enables handling and incorporating the domain knowledge in a declarative fashion, but grammars also make the new approach transparent, flexible, less problem-specific and allow it to be easily used by almost any randomized algorithm within RL. Initial test results suggest that the grammar-based algorithm has strong potential for RL tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信