低热收支快速热氧化法提高氧化物的质量和可靠性

Yonah Cho, Yoshitaka Yokota, C. Olsen, A. Tjandra, Kai Ma, Vicky Nguyen
{"title":"低热收支快速热氧化法提高氧化物的质量和可靠性","authors":"Yonah Cho, Yoshitaka Yokota, C. Olsen, A. Tjandra, Kai Ma, Vicky Nguyen","doi":"10.1109/RTP.2008.4690559","DOIUrl":null,"url":null,"abstract":"In order to meet increasing requirement for low thermal budget oxidation in memory and logic applications, RadOx™, previously known as in-situ steam generation (ISSG) oxidation, processes of low thermal budgets were developed. In this paper, oxides obtained by 700°C soak and 900–1050°C spike RadOx™ processes are presented. Sidewall growth behavior in STI-type structures were characterized and showed no bird’s beak encroachment by the developed oxidation processes. Basic bulk oxide (40Å) integrity and reliability characteristics were compared to the 1050°C soak RadOx™ reference. Using planar metal-on-semiconductor (MOS) capacitors as the test vehicles, flat-band voltage (V<inf>fb</inf>), interface trap density (D<inf>it</inf>), leakage current, and stress-induced leakage current (SILC) were measured. V<inf>fb</inf> shift of less than 20mV and D<inf>it</inf> less than 2×10<sup>11</sup>/cm<sup>2</sup> were observed from the low temperature soak and spike oxides. Leakage currents from fresh devices and after high current stressing (0.1A/cm<sup>2</sup>) were comparable to the reference oxide.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality and reliability of oxide by low thermal budget rapid thermal oxidation\",\"authors\":\"Yonah Cho, Yoshitaka Yokota, C. Olsen, A. Tjandra, Kai Ma, Vicky Nguyen\",\"doi\":\"10.1109/RTP.2008.4690559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to meet increasing requirement for low thermal budget oxidation in memory and logic applications, RadOx™, previously known as in-situ steam generation (ISSG) oxidation, processes of low thermal budgets were developed. In this paper, oxides obtained by 700°C soak and 900–1050°C spike RadOx™ processes are presented. Sidewall growth behavior in STI-type structures were characterized and showed no bird’s beak encroachment by the developed oxidation processes. Basic bulk oxide (40Å) integrity and reliability characteristics were compared to the 1050°C soak RadOx™ reference. Using planar metal-on-semiconductor (MOS) capacitors as the test vehicles, flat-band voltage (V<inf>fb</inf>), interface trap density (D<inf>it</inf>), leakage current, and stress-induced leakage current (SILC) were measured. V<inf>fb</inf> shift of less than 20mV and D<inf>it</inf> less than 2×10<sup>11</sup>/cm<sup>2</sup> were observed from the low temperature soak and spike oxides. Leakage currents from fresh devices and after high current stressing (0.1A/cm<sup>2</sup>) were comparable to the reference oxide.\",\"PeriodicalId\":317927,\"journal\":{\"name\":\"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors\",\"volume\":\"266 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTP.2008.4690559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTP.2008.4690559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了满足存储器和逻辑应用中对低热预算氧化的日益增长的需求,RadOx™(以前称为原位蒸汽生成(ISSG)氧化)开发了低热预算工艺。本文介绍了通过700°C浸泡和900-1050°C spike RadOx™工艺获得的氧化物。sti型结构的侧壁生长特征明显,且未表现出发达氧化过程的鸟喙侵蚀。基本大块氧化物(40Å)的完整性和可靠性特性与1050°C浸泡RadOx™参考进行了比较。以平面金属半导体(MOS)电容器为测试载体,测量了平面带电压(Vfb)、界面阱密度(Dit)、漏电流和应力诱发漏电流(SILC)。从低温浸泡和尖刺氧化物中观察到Vfb位移小于20mV, Dit小于2×1011/cm2。新器件和高电流应力(0.1A/cm2)后的泄漏电流与参考氧化物相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality and reliability of oxide by low thermal budget rapid thermal oxidation
In order to meet increasing requirement for low thermal budget oxidation in memory and logic applications, RadOx™, previously known as in-situ steam generation (ISSG) oxidation, processes of low thermal budgets were developed. In this paper, oxides obtained by 700°C soak and 900–1050°C spike RadOx™ processes are presented. Sidewall growth behavior in STI-type structures were characterized and showed no bird’s beak encroachment by the developed oxidation processes. Basic bulk oxide (40Å) integrity and reliability characteristics were compared to the 1050°C soak RadOx™ reference. Using planar metal-on-semiconductor (MOS) capacitors as the test vehicles, flat-band voltage (Vfb), interface trap density (Dit), leakage current, and stress-induced leakage current (SILC) were measured. Vfb shift of less than 20mV and Dit less than 2×1011/cm2 were observed from the low temperature soak and spike oxides. Leakage currents from fresh devices and after high current stressing (0.1A/cm2) were comparable to the reference oxide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信