{"title":"元胞自动机的拓扑启发问题及拓扑反例","authors":"Ville Salo, Ilkka Törmä","doi":"10.4204/EPTCS.90.5","DOIUrl":null,"url":null,"abstract":"We consider two relatively natural topologizations of the set of all cellular automata on a fixed alphabet. The first turns out to be rather pathological, in that the countable space becomes neither first-countable nor sequential. Also, reversible automata form a closed set, while surjective ones are dense. The second topology, which is induced by a metric, is studied in more detail. Continuity of composition (under certain restrictions) and inversion, as well as closedness of the set of surjective automata, are proved, and some counterexamples are given. We then generalize this space, in the sense that every shift-invariant measure on the configuration space induces a pseudometric on cellular automata, and study the properties of these spaces. We also characterize the pseudometric spaces using the Besicovitch distance, and show a connection to the first (pathological) space.","PeriodicalId":415843,"journal":{"name":"AUTOMATA & JAC","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology Inspired Problems for Cellular Automata, and a Counterexample in Topology\",\"authors\":\"Ville Salo, Ilkka Törmä\",\"doi\":\"10.4204/EPTCS.90.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider two relatively natural topologizations of the set of all cellular automata on a fixed alphabet. The first turns out to be rather pathological, in that the countable space becomes neither first-countable nor sequential. Also, reversible automata form a closed set, while surjective ones are dense. The second topology, which is induced by a metric, is studied in more detail. Continuity of composition (under certain restrictions) and inversion, as well as closedness of the set of surjective automata, are proved, and some counterexamples are given. We then generalize this space, in the sense that every shift-invariant measure on the configuration space induces a pseudometric on cellular automata, and study the properties of these spaces. We also characterize the pseudometric spaces using the Besicovitch distance, and show a connection to the first (pathological) space.\",\"PeriodicalId\":415843,\"journal\":{\"name\":\"AUTOMATA & JAC\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATA & JAC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.90.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATA & JAC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.90.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topology Inspired Problems for Cellular Automata, and a Counterexample in Topology
We consider two relatively natural topologizations of the set of all cellular automata on a fixed alphabet. The first turns out to be rather pathological, in that the countable space becomes neither first-countable nor sequential. Also, reversible automata form a closed set, while surjective ones are dense. The second topology, which is induced by a metric, is studied in more detail. Continuity of composition (under certain restrictions) and inversion, as well as closedness of the set of surjective automata, are proved, and some counterexamples are given. We then generalize this space, in the sense that every shift-invariant measure on the configuration space induces a pseudometric on cellular automata, and study the properties of these spaces. We also characterize the pseudometric spaces using the Besicovitch distance, and show a connection to the first (pathological) space.