挖掘频繁标记和部分标记的图形模式

N. Vanetik, E. Gudes
{"title":"挖掘频繁标记和部分标记的图形模式","authors":"N. Vanetik, E. Gudes","doi":"10.1109/ICDE.2004.1319987","DOIUrl":null,"url":null,"abstract":"Whereas data mining in structured data focuses on frequent data values, in semistructured and graph data the emphasis is on frequent labels and common topologies. Here, the structure of the data is just as important as its content. When data contains large amount of different labels, both fully labeled and partially labeled data may be useful. More informative patterns can be found in the database if some of the pattern nodes can be regarded as 'unlabeled'. We study the problem of discovering typical fully and partially labeled patterns of graph data. Discovered patterns are useful in many applications, including: compact representation of source information and a road-map for browsing and querying information sources.","PeriodicalId":358862,"journal":{"name":"Proceedings. 20th International Conference on Data Engineering","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Mining frequent labeled and partially labeled graph patterns\",\"authors\":\"N. Vanetik, E. Gudes\",\"doi\":\"10.1109/ICDE.2004.1319987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whereas data mining in structured data focuses on frequent data values, in semistructured and graph data the emphasis is on frequent labels and common topologies. Here, the structure of the data is just as important as its content. When data contains large amount of different labels, both fully labeled and partially labeled data may be useful. More informative patterns can be found in the database if some of the pattern nodes can be regarded as 'unlabeled'. We study the problem of discovering typical fully and partially labeled patterns of graph data. Discovered patterns are useful in many applications, including: compact representation of source information and a road-map for browsing and querying information sources.\",\"PeriodicalId\":358862,\"journal\":{\"name\":\"Proceedings. 20th International Conference on Data Engineering\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 20th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2004.1319987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 20th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2004.1319987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

结构化数据中的数据挖掘侧重于频繁的数据值,而在半结构化和图形数据中,重点是频繁的标签和公共拓扑。在这里,数据的结构和内容一样重要。当数据包含大量不同的标签时,完全标记和部分标记的数据都可能有用。如果可以将一些模式节点视为“未标记”,则可以在数据库中找到更多信息丰富的模式。研究了图数据中典型的全标记和部分标记模式的发现问题。发现的模式在许多应用程序中都很有用,包括:源信息的紧凑表示和用于浏览和查询信息源的路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining frequent labeled and partially labeled graph patterns
Whereas data mining in structured data focuses on frequent data values, in semistructured and graph data the emphasis is on frequent labels and common topologies. Here, the structure of the data is just as important as its content. When data contains large amount of different labels, both fully labeled and partially labeled data may be useful. More informative patterns can be found in the database if some of the pattern nodes can be regarded as 'unlabeled'. We study the problem of discovering typical fully and partially labeled patterns of graph data. Discovered patterns are useful in many applications, including: compact representation of source information and a road-map for browsing and querying information sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信