{"title":"运载火箭制导与控制的容错体系结构。2实现","authors":"D.A. Tazartes, J. Mark","doi":"10.1109/DASC.1990.111311","DOIUrl":null,"url":null,"abstract":"For pt.I see ibid., p.333-6 (Oct. 1990). It is indicated that fault-tolerant guidance and control systems can be employed to meet the goals of the advanced launch system. Proven redundancy management techniques are proposed for implementation in such guidance systems. The methods discussed provide a high probability of failure detection while maintaining a low probability for false alarms. A hardware architecture that stresses robustness, simplicity, and ease of verification is advocated. The channelized repartition of instruments and electronics can be modified to support different requirements and applications. The issue of simultaneous or dormant failures is addressed. The fault-tolerant architecture and implementation discussed is considered to provide excellent reliability and probability of mission success, while maintaining very reasonable costs.<<ETX>>","PeriodicalId":141205,"journal":{"name":"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A fault-tolerant architecture for launch vehicle guidance and control. II. Implementation\",\"authors\":\"D.A. Tazartes, J. Mark\",\"doi\":\"10.1109/DASC.1990.111311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For pt.I see ibid., p.333-6 (Oct. 1990). It is indicated that fault-tolerant guidance and control systems can be employed to meet the goals of the advanced launch system. Proven redundancy management techniques are proposed for implementation in such guidance systems. The methods discussed provide a high probability of failure detection while maintaining a low probability for false alarms. A hardware architecture that stresses robustness, simplicity, and ease of verification is advocated. The channelized repartition of instruments and electronics can be modified to support different requirements and applications. The issue of simultaneous or dormant failures is addressed. The fault-tolerant architecture and implementation discussed is considered to provide excellent reliability and probability of mission success, while maintaining very reasonable costs.<<ETX>>\",\"PeriodicalId\":141205,\"journal\":{\"name\":\"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.1990.111311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.1990.111311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fault-tolerant architecture for launch vehicle guidance and control. II. Implementation
For pt.I see ibid., p.333-6 (Oct. 1990). It is indicated that fault-tolerant guidance and control systems can be employed to meet the goals of the advanced launch system. Proven redundancy management techniques are proposed for implementation in such guidance systems. The methods discussed provide a high probability of failure detection while maintaining a low probability for false alarms. A hardware architecture that stresses robustness, simplicity, and ease of verification is advocated. The channelized repartition of instruments and electronics can be modified to support different requirements and applications. The issue of simultaneous or dormant failures is addressed. The fault-tolerant architecture and implementation discussed is considered to provide excellent reliability and probability of mission success, while maintaining very reasonable costs.<>