幻影曲线:通过互动音乐可视化的科学发现

Fabian C. Moss, Giovanni Affatato, Daniel Harasim
{"title":"幻影曲线:通过互动音乐可视化的科学发现","authors":"Fabian C. Moss, Giovanni Affatato, Daniel Harasim","doi":"10.1145/3543882.3543886","DOIUrl":null,"url":null,"abstract":"We introduce phantom curves, a novel music-theoretical concept based on the discrete Fourier transform (DFT), and document the creative process that led to their discovery. In particular, we emphasize the importance of interactive web applications for music visualization and analysis. This is demonstrated using the example of the application midiVERTO which affords interactions with the pitch-class content of musical pieces encoded in MIDI format without requiring in-depth understanding of the underlying mathematics. We illustrate the analytical value of studying families of phantom curves by applying the concept to music from a Broadway musical, a video game, and a Hollywood movie. This process of discovery thus testifies to the fact that digital tools can bridge disciplinary boundaries between music theory and mathematics, and this interaction can generate new scientific knowledge.","PeriodicalId":419159,"journal":{"name":"Proceedings of the 9th International Conference on Digital Libraries for Musicology","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phantom Curves: Scientific Discovery through Interactive Music Visualization\",\"authors\":\"Fabian C. Moss, Giovanni Affatato, Daniel Harasim\",\"doi\":\"10.1145/3543882.3543886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce phantom curves, a novel music-theoretical concept based on the discrete Fourier transform (DFT), and document the creative process that led to their discovery. In particular, we emphasize the importance of interactive web applications for music visualization and analysis. This is demonstrated using the example of the application midiVERTO which affords interactions with the pitch-class content of musical pieces encoded in MIDI format without requiring in-depth understanding of the underlying mathematics. We illustrate the analytical value of studying families of phantom curves by applying the concept to music from a Broadway musical, a video game, and a Hollywood movie. This process of discovery thus testifies to the fact that digital tools can bridge disciplinary boundaries between music theory and mathematics, and this interaction can generate new scientific knowledge.\",\"PeriodicalId\":419159,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Digital Libraries for Musicology\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Digital Libraries for Musicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543882.3543886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Digital Libraries for Musicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543882.3543886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了幽灵曲线,这是一种基于离散傅立叶变换(DFT)的新颖音乐理论概念,并记录了导致它们发现的创作过程。我们特别强调交互式网络应用程序对音乐可视化和分析的重要性。使用应用程序midiVERTO的示例演示了这一点,该应用程序提供了与以MIDI格式编码的音乐片段的音高类内容的交互,而不需要深入了解底层数学。我们通过将这个概念应用于百老汇音乐剧、视频游戏和好莱坞电影中的音乐来说明研究幻影曲线族的分析价值。这一发现过程证明了这样一个事实,即数字工具可以弥合音乐理论和数学之间的学科界限,这种互动可以产生新的科学知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phantom Curves: Scientific Discovery through Interactive Music Visualization
We introduce phantom curves, a novel music-theoretical concept based on the discrete Fourier transform (DFT), and document the creative process that led to their discovery. In particular, we emphasize the importance of interactive web applications for music visualization and analysis. This is demonstrated using the example of the application midiVERTO which affords interactions with the pitch-class content of musical pieces encoded in MIDI format without requiring in-depth understanding of the underlying mathematics. We illustrate the analytical value of studying families of phantom curves by applying the concept to music from a Broadway musical, a video game, and a Hollywood movie. This process of discovery thus testifies to the fact that digital tools can bridge disciplinary boundaries between music theory and mathematics, and this interaction can generate new scientific knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信