基于经验库的粒子群算法及其在两足机器人行走中的应用

Jeong-Jung Kim, Taeyong Choi, Jujang Lee
{"title":"基于经验库的粒子群算法及其在两足机器人行走中的应用","authors":"Jeong-Jung Kim, Taeyong Choi, Jujang Lee","doi":"10.1109/ICHR.2008.4755980","DOIUrl":null,"url":null,"abstract":"In this paper, experience repository based particle swarm optimization (ERPSO) is suggested for effectively applying particle swarm optimization (PSO) to real life problems. The ERPSO uses a concept experience repository to store previous position and fitness of particles to accelerate convergence speed of PSO. The proposed method was compared with PSO variants in a three dimensional dynamic simulator for the bipedal walking. The ERPSO found the best fitness value and central pattern generator parameters that could produce a walking of a biped robot. And ERPSO has fast convergence property which reduces the evaluation of fitness of parameters in a real environment.","PeriodicalId":402020,"journal":{"name":"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots","volume":"71 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Experience repository based Particle Swarm Optimization and its application to biped robot walking\",\"authors\":\"Jeong-Jung Kim, Taeyong Choi, Jujang Lee\",\"doi\":\"10.1109/ICHR.2008.4755980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, experience repository based particle swarm optimization (ERPSO) is suggested for effectively applying particle swarm optimization (PSO) to real life problems. The ERPSO uses a concept experience repository to store previous position and fitness of particles to accelerate convergence speed of PSO. The proposed method was compared with PSO variants in a three dimensional dynamic simulator for the bipedal walking. The ERPSO found the best fitness value and central pattern generator parameters that could produce a walking of a biped robot. And ERPSO has fast convergence property which reduces the evaluation of fitness of parameters in a real environment.\",\"PeriodicalId\":402020,\"journal\":{\"name\":\"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots\",\"volume\":\"71 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHR.2008.4755980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHR.2008.4755980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于经验库的粒子群优化方法(ERPSO),以便将粒子群优化方法有效地应用于实际问题。该算法利用概念经验库存储粒子的先前位置和适应度,以加快粒子群算法的收敛速度。在双足行走三维动态仿真中,将该方法与粒子群算法进行了比较。ERPSO找到了能产生双足机器人行走的最佳适应度值和中心模式生成器参数。ERPSO具有快速收敛的特性,减少了实际环境中参数适应度的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experience repository based Particle Swarm Optimization and its application to biped robot walking
In this paper, experience repository based particle swarm optimization (ERPSO) is suggested for effectively applying particle swarm optimization (PSO) to real life problems. The ERPSO uses a concept experience repository to store previous position and fitness of particles to accelerate convergence speed of PSO. The proposed method was compared with PSO variants in a three dimensional dynamic simulator for the bipedal walking. The ERPSO found the best fitness value and central pattern generator parameters that could produce a walking of a biped robot. And ERPSO has fast convergence property which reduces the evaluation of fitness of parameters in a real environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信