从摘要和标题中提取关键字

Rajarshi Bhowmik
{"title":"从摘要和标题中提取关键字","authors":"Rajarshi Bhowmik","doi":"10.1109/SECON.2008.4494366","DOIUrl":null,"url":null,"abstract":"Keywords are very important for any academic paper. We propose the Perceptron Training Rule for keyword extraction from titles and abstracts. We present a system for generating keywords which relies on weights of words in a sentence. The system generates keywords from academic research articles by selecting the most relevant keywords. We compare the keywords generated by our system and those generated by cluster analysis to the keywords given by the authors and analyze the results based on full-keyword matches, partial-keyword matches and no-keyword matches.","PeriodicalId":188817,"journal":{"name":"IEEE SoutheastCon 2008","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Keyword extraction from abstracts and titles\",\"authors\":\"Rajarshi Bhowmik\",\"doi\":\"10.1109/SECON.2008.4494366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keywords are very important for any academic paper. We propose the Perceptron Training Rule for keyword extraction from titles and abstracts. We present a system for generating keywords which relies on weights of words in a sentence. The system generates keywords from academic research articles by selecting the most relevant keywords. We compare the keywords generated by our system and those generated by cluster analysis to the keywords given by the authors and analyze the results based on full-keyword matches, partial-keyword matches and no-keyword matches.\",\"PeriodicalId\":188817,\"journal\":{\"name\":\"IEEE SoutheastCon 2008\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE SoutheastCon 2008\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2008.4494366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE SoutheastCon 2008","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2008.4494366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

关键词对于任何学术论文都是非常重要的。我们提出了从标题和摘要中提取关键字的感知机训练规则。我们提出了一个基于句子中单词权重的关键字生成系统。该系统通过选择最相关的关键词,从学术研究文章中生成关键词。我们将系统生成的关键词和聚类分析生成的关键词与作者给出的关键词进行比较,并根据全关键词匹配、部分关键词匹配和无关键词匹配对结果进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Keyword extraction from abstracts and titles
Keywords are very important for any academic paper. We propose the Perceptron Training Rule for keyword extraction from titles and abstracts. We present a system for generating keywords which relies on weights of words in a sentence. The system generates keywords from academic research articles by selecting the most relevant keywords. We compare the keywords generated by our system and those generated by cluster analysis to the keywords given by the authors and analyze the results based on full-keyword matches, partial-keyword matches and no-keyword matches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信