超声心动图左心室分割的改进MultiResUNet方法

Fityan Azizi, Akbar Fathur Sani, R. Priambodo, Wisma Chaerul Karunianto, M. M. L. Ramadhan, M. F. Rachmadi, W. Jatmiko
{"title":"超声心动图左心室分割的改进MultiResUNet方法","authors":"Fityan Azizi, Akbar Fathur Sani, R. Priambodo, Wisma Chaerul Karunianto, M. M. L. Ramadhan, M. F. Rachmadi, W. Jatmiko","doi":"10.1109/IWBIS56557.2022.9924685","DOIUrl":null,"url":null,"abstract":"An accurate assessment of heart function is crucial in diagnosing the cardiovascular disease. One way to evaluate or detect the disease can use echocardiography, by detecting systolic and diastolic volumes. However, manual human assessments can be time-consuming and error-prone due to the low resolution of the image. One way to detect heart failure on echocardiogram is by segmenting the left ventricle on the echocardiogram using deep learning. In this study, we modified the MultiResUNet model for left ventricle segmentation in echocardiography images by adding Atrous Spatial Pyramid Pooling block and Attention block. The use of multires blocks from MultiResUnet is able to overcome the problem of multi-resolution segmentation objects, where the segmentation objects have different sizes. This problem has similar characteristics to echocardiographic images, where the systole and diastole segmentation objects have different sizes from each other. Performance measure were evaluated using Echonet-Dynamic dataset. The proposed model achieves dice coefficient of 92%, giving an additional 2% performance result compared to the MultiResUNet.","PeriodicalId":348371,"journal":{"name":"2022 7th International Workshop on Big Data and Information Security (IWBIS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified MultiResUNet for Left Ventricle Segmentation from Echocardiographic Images\",\"authors\":\"Fityan Azizi, Akbar Fathur Sani, R. Priambodo, Wisma Chaerul Karunianto, M. M. L. Ramadhan, M. F. Rachmadi, W. Jatmiko\",\"doi\":\"10.1109/IWBIS56557.2022.9924685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate assessment of heart function is crucial in diagnosing the cardiovascular disease. One way to evaluate or detect the disease can use echocardiography, by detecting systolic and diastolic volumes. However, manual human assessments can be time-consuming and error-prone due to the low resolution of the image. One way to detect heart failure on echocardiogram is by segmenting the left ventricle on the echocardiogram using deep learning. In this study, we modified the MultiResUNet model for left ventricle segmentation in echocardiography images by adding Atrous Spatial Pyramid Pooling block and Attention block. The use of multires blocks from MultiResUnet is able to overcome the problem of multi-resolution segmentation objects, where the segmentation objects have different sizes. This problem has similar characteristics to echocardiographic images, where the systole and diastole segmentation objects have different sizes from each other. Performance measure were evaluated using Echonet-Dynamic dataset. The proposed model achieves dice coefficient of 92%, giving an additional 2% performance result compared to the MultiResUNet.\",\"PeriodicalId\":348371,\"journal\":{\"name\":\"2022 7th International Workshop on Big Data and Information Security (IWBIS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Workshop on Big Data and Information Security (IWBIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBIS56557.2022.9924685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Workshop on Big Data and Information Security (IWBIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBIS56557.2022.9924685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心功能的准确评估对心血管疾病的诊断至关重要。一种评估或检测疾病的方法是使用超声心动图,通过检测收缩期和舒张期容积。然而,由于图像的低分辨率,人工评估可能非常耗时且容易出错。在超声心动图上检测心力衰竭的一种方法是使用深度学习对超声心动图上的左心室进行分割。在本研究中,我们改进了超声心动图图像中左心室分割的MultiResUNet模型,增加了阿特鲁斯空间金字塔池块和注意力块。使用来自MultiResUnet的multires块能够克服多分辨率分割对象的问题,其中分割对象具有不同的大小。该问题与超声心动图图像具有相似的特征,其中收缩期和舒张期分割对象彼此大小不同。使用Echonet-Dynamic数据集对性能指标进行评估。该模型实现了92%的骰子系数,与MultiResUNet相比,性能结果增加了2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified MultiResUNet for Left Ventricle Segmentation from Echocardiographic Images
An accurate assessment of heart function is crucial in diagnosing the cardiovascular disease. One way to evaluate or detect the disease can use echocardiography, by detecting systolic and diastolic volumes. However, manual human assessments can be time-consuming and error-prone due to the low resolution of the image. One way to detect heart failure on echocardiogram is by segmenting the left ventricle on the echocardiogram using deep learning. In this study, we modified the MultiResUNet model for left ventricle segmentation in echocardiography images by adding Atrous Spatial Pyramid Pooling block and Attention block. The use of multires blocks from MultiResUnet is able to overcome the problem of multi-resolution segmentation objects, where the segmentation objects have different sizes. This problem has similar characteristics to echocardiographic images, where the systole and diastole segmentation objects have different sizes from each other. Performance measure were evaluated using Echonet-Dynamic dataset. The proposed model achieves dice coefficient of 92%, giving an additional 2% performance result compared to the MultiResUNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信