基于fpga的深度神经网络加速器的实现

T. Tsai, Yuan-Chen Ho, M. Sheu
{"title":"基于fpga的深度神经网络加速器的实现","authors":"T. Tsai, Yuan-Chen Ho, M. Sheu","doi":"10.1109/DDECS.2019.8724665","DOIUrl":null,"url":null,"abstract":"At present, there are many researches on deep neural network (DNN) applied in life. In the task of object recognition, deep convolutional neural network (CNN) has a good performance, but it relies on GPU to solve a large number of complex operations. Thus the hardware accelerator of DNN is concerned by many people. In order to implement the DNN model on hardware, complex connection relationship and memory usage scheduling are needed. This paper presnets the design of FPGA-based accelerator for DNN. The proposed architecture is implemented on Xilinx Zynq-7020 FPGA. It takes the advantages of low latency and low usage in the task of MNIST digital identification, and keeps the 96 % recognition rate.","PeriodicalId":197053,"journal":{"name":"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Implementation of FPGA-based Accelerator for Deep Neural Networks\",\"authors\":\"T. Tsai, Yuan-Chen Ho, M. Sheu\",\"doi\":\"10.1109/DDECS.2019.8724665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, there are many researches on deep neural network (DNN) applied in life. In the task of object recognition, deep convolutional neural network (CNN) has a good performance, but it relies on GPU to solve a large number of complex operations. Thus the hardware accelerator of DNN is concerned by many people. In order to implement the DNN model on hardware, complex connection relationship and memory usage scheduling are needed. This paper presnets the design of FPGA-based accelerator for DNN. The proposed architecture is implemented on Xilinx Zynq-7020 FPGA. It takes the advantages of low latency and low usage in the task of MNIST digital identification, and keeps the 96 % recognition rate.\",\"PeriodicalId\":197053,\"journal\":{\"name\":\"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS.2019.8724665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2019.8724665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

目前,深度神经网络(DNN)在生活中的应用研究较多。在物体识别任务中,深度卷积神经网络(CNN)具有良好的性能,但它依赖于GPU来解决大量复杂的操作。因此,深度神经网络的硬件加速器受到了很多人的关注。为了在硬件上实现深度神经网络模型,需要复杂的连接关系和内存使用调度。本文介绍了基于fpga的深度神经网络加速器的设计。该架构在Xilinx Zynq-7020 FPGA上实现。该方法在MNIST数字识别任务中具有低时延、低使用率的优点,识别率保持在96%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of FPGA-based Accelerator for Deep Neural Networks
At present, there are many researches on deep neural network (DNN) applied in life. In the task of object recognition, deep convolutional neural network (CNN) has a good performance, but it relies on GPU to solve a large number of complex operations. Thus the hardware accelerator of DNN is concerned by many people. In order to implement the DNN model on hardware, complex connection relationship and memory usage scheduling are needed. This paper presnets the design of FPGA-based accelerator for DNN. The proposed architecture is implemented on Xilinx Zynq-7020 FPGA. It takes the advantages of low latency and low usage in the task of MNIST digital identification, and keeps the 96 % recognition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信