(k, ε)-匿名:一种阻止相似攻击的匿名模型

Haiyuan Wang, Jianmin Han, Jiyi Wang, Lixia Wang
{"title":"(k, ε)-匿名:一种阻止相似攻击的匿名模型","authors":"Haiyuan Wang, Jianmin Han, Jiyi Wang, Lixia Wang","doi":"10.1109/GrC.2013.6740431","DOIUrl":null,"url":null,"abstract":"Existing anonymity models rarely consider the semantic similarity between sensitive values, so they cannot thwart similarity attack. To solve the problem, this paper proposes a (k, ε)-anonymity model which requires that each equivalence class in anonymous dataset satisfy k-anonymity constraints. At the same time, any two sensitive values in the same equivalence class are not ε-similar. The paper also proposes a (k, ε)-KACA algorithm. Experimental results show that the anonymous data satisfy(k, ε)-anonymity has higher diversity than that satisfy k-anonymity model, so (k, ε)-anonymity model can protect privacy more effective than k-anonymity model.","PeriodicalId":415445,"journal":{"name":"2013 IEEE International Conference on Granular Computing (GrC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"(k, ε)-Anonymity: An anonymity model for thwarting similarity attack\",\"authors\":\"Haiyuan Wang, Jianmin Han, Jiyi Wang, Lixia Wang\",\"doi\":\"10.1109/GrC.2013.6740431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing anonymity models rarely consider the semantic similarity between sensitive values, so they cannot thwart similarity attack. To solve the problem, this paper proposes a (k, ε)-anonymity model which requires that each equivalence class in anonymous dataset satisfy k-anonymity constraints. At the same time, any two sensitive values in the same equivalence class are not ε-similar. The paper also proposes a (k, ε)-KACA algorithm. Experimental results show that the anonymous data satisfy(k, ε)-anonymity has higher diversity than that satisfy k-anonymity model, so (k, ε)-anonymity model can protect privacy more effective than k-anonymity model.\",\"PeriodicalId\":415445,\"journal\":{\"name\":\"2013 IEEE International Conference on Granular Computing (GrC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Granular Computing (GrC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GrC.2013.6740431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Granular Computing (GrC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GrC.2013.6740431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

现有的匿名模型很少考虑敏感值之间的语义相似度,无法有效抵御相似攻击。为了解决这一问题,本文提出了一个(k, ε)-匿名模型,该模型要求匿名数据集中的每个等价类满足k-匿名约束。同时,同一等价类中的任意两个敏感值并不ε-相似。本文还提出了一种(k, ε)-KACA算法。实验结果表明,满足(k, ε)-匿名的匿名数据比满足k-匿名模型的匿名数据具有更高的多样性,因此(k, ε)-匿名模型比k-匿名模型更能有效地保护隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(k, ε)-Anonymity: An anonymity model for thwarting similarity attack
Existing anonymity models rarely consider the semantic similarity between sensitive values, so they cannot thwart similarity attack. To solve the problem, this paper proposes a (k, ε)-anonymity model which requires that each equivalence class in anonymous dataset satisfy k-anonymity constraints. At the same time, any two sensitive values in the same equivalence class are not ε-similar. The paper also proposes a (k, ε)-KACA algorithm. Experimental results show that the anonymous data satisfy(k, ε)-anonymity has higher diversity than that satisfy k-anonymity model, so (k, ε)-anonymity model can protect privacy more effective than k-anonymity model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信