超快气体在低于一个大气压的压力下分解

H. Krompholz, L. Hatfield, A. Neuber, J. Chaparro, H. Ryu, W. Justis
{"title":"超快气体在低于一个大气压的压力下分解","authors":"H. Krompholz, L. Hatfield, A. Neuber, J. Chaparro, H. Ryu, W. Justis","doi":"10.1109/CEIDP.2006.311996","DOIUrl":null,"url":null,"abstract":"Gas breakdown in quasi homogeneous electric fields with amplitudes of up to 3 MV/cm is investigated. The setup consists of a RADAN 303 A pulser and pulse sheer SN 4, an impedance-matched oil-filled coaxial line with a lens-transition to a biconical line in vacuum or gas, and an axial or radial gap with a width on the order of mm, with a symmetrical arrangement on the other side of the gap. Capacitive voltage dividers allow to determine voltage across as well as conduction current through the gap, with a temporal resolution determined by the oscilloscope sampling rate of 20 GS/s and an analog bandwidth of 6 GHz. The gap capacitance charging time and voltage risetime across the gap is less than 250 ps. Previous experiments at TTU with a slightly larger risetime have shown that breakdown is governed by runaway electrons, with multi-channel formation and high ionization and light emission in a thin cathode layer only. In argon and air, time constants for the discharge development have been observed to have a minimum of around 100 ps at several 10 torr. A qualitative understanding of the observed phenomena and their dependence on gas pressure is based on explosive field emission and gaseous ionization for electron runaway conditions.","PeriodicalId":219099,"journal":{"name":"2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena","volume":"587 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ultrafast gas breakdown at pressures below one atmosphere\",\"authors\":\"H. Krompholz, L. Hatfield, A. Neuber, J. Chaparro, H. Ryu, W. Justis\",\"doi\":\"10.1109/CEIDP.2006.311996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gas breakdown in quasi homogeneous electric fields with amplitudes of up to 3 MV/cm is investigated. The setup consists of a RADAN 303 A pulser and pulse sheer SN 4, an impedance-matched oil-filled coaxial line with a lens-transition to a biconical line in vacuum or gas, and an axial or radial gap with a width on the order of mm, with a symmetrical arrangement on the other side of the gap. Capacitive voltage dividers allow to determine voltage across as well as conduction current through the gap, with a temporal resolution determined by the oscilloscope sampling rate of 20 GS/s and an analog bandwidth of 6 GHz. The gap capacitance charging time and voltage risetime across the gap is less than 250 ps. Previous experiments at TTU with a slightly larger risetime have shown that breakdown is governed by runaway electrons, with multi-channel formation and high ionization and light emission in a thin cathode layer only. In argon and air, time constants for the discharge development have been observed to have a minimum of around 100 ps at several 10 torr. A qualitative understanding of the observed phenomena and their dependence on gas pressure is based on explosive field emission and gaseous ionization for electron runaway conditions.\",\"PeriodicalId\":219099,\"journal\":{\"name\":\"2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena\",\"volume\":\"587 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEIDP.2006.311996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.2006.311996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了振幅达3mv /cm的准均匀电场中气体击穿现象。该装置由RADAN 303 a脉冲发生器和sn4脉冲滤波器组成,在真空或气体中有透镜过渡到双锥线的阻抗匹配充油同轴线,以及宽度约为mm的轴向或径向间隙,在间隙的另一侧对称布置。电容分压器允许确定电压以及通过间隙的传导电流,其时间分辨率由示波器采样率为20 GS/s和模拟带宽为6 GHz决定。间隙电容的充电时间和电压上升时间小于250 ps。以前在TTU的实验中,上升时间略大的实验表明,击穿是由失控电子控制的,仅在薄阴极层中形成多通道,高电离和光发射。在氩气和空气中,已经观察到放电发展的时间常数在几个10 torr下至少有100 ps左右。对所观察到的现象及其对气体压力的依赖的定性理解是基于电子失控条件下的爆炸场发射和气体电离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrafast gas breakdown at pressures below one atmosphere
Gas breakdown in quasi homogeneous electric fields with amplitudes of up to 3 MV/cm is investigated. The setup consists of a RADAN 303 A pulser and pulse sheer SN 4, an impedance-matched oil-filled coaxial line with a lens-transition to a biconical line in vacuum or gas, and an axial or radial gap with a width on the order of mm, with a symmetrical arrangement on the other side of the gap. Capacitive voltage dividers allow to determine voltage across as well as conduction current through the gap, with a temporal resolution determined by the oscilloscope sampling rate of 20 GS/s and an analog bandwidth of 6 GHz. The gap capacitance charging time and voltage risetime across the gap is less than 250 ps. Previous experiments at TTU with a slightly larger risetime have shown that breakdown is governed by runaway electrons, with multi-channel formation and high ionization and light emission in a thin cathode layer only. In argon and air, time constants for the discharge development have been observed to have a minimum of around 100 ps at several 10 torr. A qualitative understanding of the observed phenomena and their dependence on gas pressure is based on explosive field emission and gaseous ionization for electron runaway conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信