{"title":"超宽带内成像雷达介电常数估计方法的实验研究","authors":"T. Manaka, S. Kidera, T. Kirimoto","doi":"10.1109/ISANP.2014.7026576","DOIUrl":null,"url":null,"abstract":"Ultra-wideband (UWB) radar, with high range resolution and ability of penetrating dielectric media, has a great potential for innovative non-destructive testing for aging roads or bridges or non-invasive medical imaging. We have already proposed an accurate permittivity estimation method for a homogeneous dielectric object based on the geometrical optics (GO) approximation, where dielectric boundary points and their normal vectors are directly reproduced by the range point migration (RPM) method. In addition, the finite-difference time domain (FDTD) based waveform reconstruction method was incorporated to compensate for errors incurred by the GO approximation. This paper shows the experimental investigation of this method, where the new approach for suppressing the creeping wave along dielectric boundary is introduced. The results from real observation data validate its effectiveness, in terms of highly accurate permittivity estimation and buried object boundary reconstruction.","PeriodicalId":354277,"journal":{"name":"2014 International Symposium on Antennas and Propagation Conference Proceedings","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental study on permittivity estimation method for UWB internal imaging radar\",\"authors\":\"T. Manaka, S. Kidera, T. Kirimoto\",\"doi\":\"10.1109/ISANP.2014.7026576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-wideband (UWB) radar, with high range resolution and ability of penetrating dielectric media, has a great potential for innovative non-destructive testing for aging roads or bridges or non-invasive medical imaging. We have already proposed an accurate permittivity estimation method for a homogeneous dielectric object based on the geometrical optics (GO) approximation, where dielectric boundary points and their normal vectors are directly reproduced by the range point migration (RPM) method. In addition, the finite-difference time domain (FDTD) based waveform reconstruction method was incorporated to compensate for errors incurred by the GO approximation. This paper shows the experimental investigation of this method, where the new approach for suppressing the creeping wave along dielectric boundary is introduced. The results from real observation data validate its effectiveness, in terms of highly accurate permittivity estimation and buried object boundary reconstruction.\",\"PeriodicalId\":354277,\"journal\":{\"name\":\"2014 International Symposium on Antennas and Propagation Conference Proceedings\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Symposium on Antennas and Propagation Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISANP.2014.7026576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Antennas and Propagation Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISANP.2014.7026576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental study on permittivity estimation method for UWB internal imaging radar
Ultra-wideband (UWB) radar, with high range resolution and ability of penetrating dielectric media, has a great potential for innovative non-destructive testing for aging roads or bridges or non-invasive medical imaging. We have already proposed an accurate permittivity estimation method for a homogeneous dielectric object based on the geometrical optics (GO) approximation, where dielectric boundary points and their normal vectors are directly reproduced by the range point migration (RPM) method. In addition, the finite-difference time domain (FDTD) based waveform reconstruction method was incorporated to compensate for errors incurred by the GO approximation. This paper shows the experimental investigation of this method, where the new approach for suppressing the creeping wave along dielectric boundary is introduced. The results from real observation data validate its effectiveness, in terms of highly accurate permittivity estimation and buried object boundary reconstruction.