基于fft的2d - nrt方法误差分析及最优参数评价

L. Brancík
{"title":"基于fft的2d - nrt方法误差分析及最优参数评价","authors":"L. Brancík","doi":"10.1109/APCCAS.2004.1413002","DOIUrl":null,"url":null,"abstract":"The paper deals with the method of numerical inversion of two-dimensional Laplace transforms based on a FFT. Its main advantage lies in high speed of calculation, however, it has to be always connected with a proper technique of the convergence acceleration to achieve the required accuracy. It has been shown that either the epsilon or quotient-difference algorithm is suited for this purpose. In the paper the error analysis, comparison and evaluation of optimal NILT parameters are canied out.","PeriodicalId":426683,"journal":{"name":"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Error analysis and optimal parameter evaluation in FFT-based 2D-nilt method\",\"authors\":\"L. Brancík\",\"doi\":\"10.1109/APCCAS.2004.1413002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the method of numerical inversion of two-dimensional Laplace transforms based on a FFT. Its main advantage lies in high speed of calculation, however, it has to be always connected with a proper technique of the convergence acceleration to achieve the required accuracy. It has been shown that either the epsilon or quotient-difference algorithm is suited for this purpose. In the paper the error analysis, comparison and evaluation of optimal NILT parameters are canied out.\",\"PeriodicalId\":426683,\"journal\":{\"name\":\"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.2004.1413002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2004.1413002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了基于FFT的二维拉普拉斯变换的数值反演方法。它的主要优点是计算速度快,但必须始终与适当的收敛加速技术相结合,才能达到所需的精度。已经证明,无论是epsilon还是商差算法都适合于此目的。本文对最优的NILT参数进行了误差分析、比较和评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error analysis and optimal parameter evaluation in FFT-based 2D-nilt method
The paper deals with the method of numerical inversion of two-dimensional Laplace transforms based on a FFT. Its main advantage lies in high speed of calculation, however, it has to be always connected with a proper technique of the convergence acceleration to achieve the required accuracy. It has been shown that either the epsilon or quotient-difference algorithm is suited for this purpose. In the paper the error analysis, comparison and evaluation of optimal NILT parameters are canied out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信