GAN-Dummy填充:使用GAN的定时感知Dummy填充方法

Myong Kong, D. Kim, Minhyuk Kweon, Seokhyeong Kang
{"title":"GAN-Dummy填充:使用GAN的定时感知Dummy填充方法","authors":"Myong Kong, D. Kim, Minhyuk Kweon, Seokhyeong Kang","doi":"10.1145/3526241.3530352","DOIUrl":null,"url":null,"abstract":"The chemical mechanical polishing (CMP) dummy fill method is commonly used for the planarization of the CMP process, resulting in the development of many automated methods. We propose a dummy fill method using a generative adversarial network (GAN) that improves the existing dummy fill methods in terms of the uniformity of metal density and timing of critical nets. The dummy patterns created were similar to those of existing methods. However, the GAN dummy fill method applies additional optimizations to make the CMP dummy fill pattern efficient. The method learns by adding density and parasitic capacitance to the loss function of the GAN. Compared to dummy patterns generated from commercial tools, dummy patterns generated from GAN-dummy fill reduced the negative timing slack due to parasitic capacitance by up to 45%.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GAN-Dummy Fill: Timing-aware Dummy Fill Method using GAN\",\"authors\":\"Myong Kong, D. Kim, Minhyuk Kweon, Seokhyeong Kang\",\"doi\":\"10.1145/3526241.3530352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chemical mechanical polishing (CMP) dummy fill method is commonly used for the planarization of the CMP process, resulting in the development of many automated methods. We propose a dummy fill method using a generative adversarial network (GAN) that improves the existing dummy fill methods in terms of the uniformity of metal density and timing of critical nets. The dummy patterns created were similar to those of existing methods. However, the GAN dummy fill method applies additional optimizations to make the CMP dummy fill pattern efficient. The method learns by adding density and parasitic capacitance to the loss function of the GAN. Compared to dummy patterns generated from commercial tools, dummy patterns generated from GAN-dummy fill reduced the negative timing slack due to parasitic capacitance by up to 45%.\",\"PeriodicalId\":188228,\"journal\":{\"name\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526241.3530352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

化学机械抛光(CMP)假人填充法是CMP工艺中常用的平面化方法,导致了许多自动化方法的发展。我们提出了一种使用生成对抗网络(GAN)的虚拟填充方法,该方法在金属密度均匀性和临界网的定时方面改进了现有的虚拟填充方法。创建的虚拟模式与现有方法相似。然而,GAN假体填充方法应用了额外的优化,使CMP假体填充模式高效。该方法通过在GAN的损失函数中加入密度和寄生电容进行学习。与商用工具生成的虚拟模式相比,GAN-dummy填充生成的虚拟模式将寄生电容导致的负时序松弛减少了45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GAN-Dummy Fill: Timing-aware Dummy Fill Method using GAN
The chemical mechanical polishing (CMP) dummy fill method is commonly used for the planarization of the CMP process, resulting in the development of many automated methods. We propose a dummy fill method using a generative adversarial network (GAN) that improves the existing dummy fill methods in terms of the uniformity of metal density and timing of critical nets. The dummy patterns created were similar to those of existing methods. However, the GAN dummy fill method applies additional optimizations to make the CMP dummy fill pattern efficient. The method learns by adding density and parasitic capacitance to the loss function of the GAN. Compared to dummy patterns generated from commercial tools, dummy patterns generated from GAN-dummy fill reduced the negative timing slack due to parasitic capacitance by up to 45%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信