{"title":"图的逻辑复杂性:综述","authors":"O. Pikhurko, O. Verbitsky","doi":"10.1090/conm/558/11050","DOIUrl":null,"url":null,"abstract":"We discuss the definability of finite graphs in first-order logic with two relation symbols for adjacency and equality of vertices. The logical depth $D(G)$ of a graph $G$ is equal to the minimum quantifier depth of a sentence defining $G$ up to isomorphism. The logical width $W(G)$ is the minimum number of variables occurring in such a sentence. The logical length $L(G)$ is the length of a shortest defining sentence. We survey known estimates for these graph parameters and discuss their relations to other topics (such as the efficiency of the Weisfeiler-Lehman algorithm in isomorphism testing, the evolution of a random graph, quantitative characteristics of the zero-one law, or the contribution of Frank Ramsey to the research on Hilbert's Entscheidungsproblem). Also, we trace the behavior of the descriptive complexity of a graph as the logic becomes more restrictive (for example, only definitions with a bounded number of variables or quantifier alternations are allowed) or more expressible (after powering with counting quantifiers).","PeriodicalId":110641,"journal":{"name":"AMS-ASL Joint Special Session","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Logical complexity of graphs: a survey\",\"authors\":\"O. Pikhurko, O. Verbitsky\",\"doi\":\"10.1090/conm/558/11050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the definability of finite graphs in first-order logic with two relation symbols for adjacency and equality of vertices. The logical depth $D(G)$ of a graph $G$ is equal to the minimum quantifier depth of a sentence defining $G$ up to isomorphism. The logical width $W(G)$ is the minimum number of variables occurring in such a sentence. The logical length $L(G)$ is the length of a shortest defining sentence. We survey known estimates for these graph parameters and discuss their relations to other topics (such as the efficiency of the Weisfeiler-Lehman algorithm in isomorphism testing, the evolution of a random graph, quantitative characteristics of the zero-one law, or the contribution of Frank Ramsey to the research on Hilbert's Entscheidungsproblem). Also, we trace the behavior of the descriptive complexity of a graph as the logic becomes more restrictive (for example, only definitions with a bounded number of variables or quantifier alternations are allowed) or more expressible (after powering with counting quantifiers).\",\"PeriodicalId\":110641,\"journal\":{\"name\":\"AMS-ASL Joint Special Session\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMS-ASL Joint Special Session\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/558/11050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMS-ASL Joint Special Session","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/558/11050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We discuss the definability of finite graphs in first-order logic with two relation symbols for adjacency and equality of vertices. The logical depth $D(G)$ of a graph $G$ is equal to the minimum quantifier depth of a sentence defining $G$ up to isomorphism. The logical width $W(G)$ is the minimum number of variables occurring in such a sentence. The logical length $L(G)$ is the length of a shortest defining sentence. We survey known estimates for these graph parameters and discuss their relations to other topics (such as the efficiency of the Weisfeiler-Lehman algorithm in isomorphism testing, the evolution of a random graph, quantitative characteristics of the zero-one law, or the contribution of Frank Ramsey to the research on Hilbert's Entscheidungsproblem). Also, we trace the behavior of the descriptive complexity of a graph as the logic becomes more restrictive (for example, only definitions with a bounded number of variables or quantifier alternations are allowed) or more expressible (after powering with counting quantifiers).