图的逻辑复杂性:综述

O. Pikhurko, O. Verbitsky
{"title":"图的逻辑复杂性:综述","authors":"O. Pikhurko, O. Verbitsky","doi":"10.1090/conm/558/11050","DOIUrl":null,"url":null,"abstract":"We discuss the definability of finite graphs in first-order logic with two relation symbols for adjacency and equality of vertices. The logical depth $D(G)$ of a graph $G$ is equal to the minimum quantifier depth of a sentence defining $G$ up to isomorphism. The logical width $W(G)$ is the minimum number of variables occurring in such a sentence. The logical length $L(G)$ is the length of a shortest defining sentence. We survey known estimates for these graph parameters and discuss their relations to other topics (such as the efficiency of the Weisfeiler-Lehman algorithm in isomorphism testing, the evolution of a random graph, quantitative characteristics of the zero-one law, or the contribution of Frank Ramsey to the research on Hilbert's Entscheidungsproblem). Also, we trace the behavior of the descriptive complexity of a graph as the logic becomes more restrictive (for example, only definitions with a bounded number of variables or quantifier alternations are allowed) or more expressible (after powering with counting quantifiers).","PeriodicalId":110641,"journal":{"name":"AMS-ASL Joint Special Session","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Logical complexity of graphs: a survey\",\"authors\":\"O. Pikhurko, O. Verbitsky\",\"doi\":\"10.1090/conm/558/11050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the definability of finite graphs in first-order logic with two relation symbols for adjacency and equality of vertices. The logical depth $D(G)$ of a graph $G$ is equal to the minimum quantifier depth of a sentence defining $G$ up to isomorphism. The logical width $W(G)$ is the minimum number of variables occurring in such a sentence. The logical length $L(G)$ is the length of a shortest defining sentence. We survey known estimates for these graph parameters and discuss their relations to other topics (such as the efficiency of the Weisfeiler-Lehman algorithm in isomorphism testing, the evolution of a random graph, quantitative characteristics of the zero-one law, or the contribution of Frank Ramsey to the research on Hilbert's Entscheidungsproblem). Also, we trace the behavior of the descriptive complexity of a graph as the logic becomes more restrictive (for example, only definitions with a bounded number of variables or quantifier alternations are allowed) or more expressible (after powering with counting quantifiers).\",\"PeriodicalId\":110641,\"journal\":{\"name\":\"AMS-ASL Joint Special Session\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMS-ASL Joint Special Session\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/558/11050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMS-ASL Joint Special Session","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/558/11050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

讨论了一阶逻辑中有限图的可定义性,给出了两个顶点邻接性和相等性的关系符号。图$G$的逻辑深度$D(G)$等于定义$G$直至同构的句子的最小量词深度$G$。逻辑宽度$W(G)$是这样一个句子中出现的最小变量数。逻辑长度$L(G)$是最短定义句子的长度。我们调查了这些图参数的已知估计,并讨论了它们与其他主题的关系(如Weisfeiler-Lehman算法在同构测试中的效率,随机图的演化,0 - 1定律的定量特征,或Frank Ramsey对Hilbert的Entscheidungsproblem研究的贡献)。此外,随着逻辑变得更具限制性(例如,只允许具有有限数量的变量或量词替换的定义)或更具可表达性(在使用计数量词之后),我们跟踪图的描述性复杂性的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logical complexity of graphs: a survey
We discuss the definability of finite graphs in first-order logic with two relation symbols for adjacency and equality of vertices. The logical depth $D(G)$ of a graph $G$ is equal to the minimum quantifier depth of a sentence defining $G$ up to isomorphism. The logical width $W(G)$ is the minimum number of variables occurring in such a sentence. The logical length $L(G)$ is the length of a shortest defining sentence. We survey known estimates for these graph parameters and discuss their relations to other topics (such as the efficiency of the Weisfeiler-Lehman algorithm in isomorphism testing, the evolution of a random graph, quantitative characteristics of the zero-one law, or the contribution of Frank Ramsey to the research on Hilbert's Entscheidungsproblem). Also, we trace the behavior of the descriptive complexity of a graph as the logic becomes more restrictive (for example, only definitions with a bounded number of variables or quantifier alternations are allowed) or more expressible (after powering with counting quantifiers).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信